RelationsandFunctions
Question1
Thefunctionf:N−{1}→N;definedbyf(n)=thehighestprimefactor
ofn,is:
[27-Jan-2024Shift1]
Options:
A.
bothone-oneandonto
B.
one-oneonly
C.
ontoonly
D.
neitherone-onenoronto
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question2
Options:
A.
B.
R
C.
D.
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question3
Considerthefunctionf:[1/2,1]→Rdefinedbyf(x)=4√2x3−3√2x−1.
Considerthestatements
(I)Thecurvey=f(x)intersectsthex-axisexactlyatonepoint
(II)Thecurvey=f(x)intersectsthex-axisatx=cosπ/12
Then
[29-Jan-2024Shift1]
Options:
A.
Only(II)iscorrect
B.
Both(I)and(II)areincorrect
C.
Only(I)iscorrect
D.
Both(I)and(II)arecorrect
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question4
[29-Jan-2024Shift1]
Options:
A.
(0,1]
B.
[0,3)
C.
[0,1]
D.
[0,1)
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question5
Letf(x)=2x−x2,x∈R.Ifmandnarerespectivelythenumberof
pointsatwhichthecurvesy=f(x)andy=f′(x)intersectsthex-axis,
thenthevalueofm+nis
[29-Jan-2024Shift1]
Answer:5
Solution:
-------------------------------------------------------------------------------------------------
Question6
Ifthedomainofthefunctionf(x)=cos−1(2-|x|/4)+(loge(3−x))
−1is[−α,β)−{y},thenα+β+γisequalto:
[30-Jan-2024Shift1]
Options:
A.
12
B.
9
C.
11
D.
8
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question7
LetA={1,2,3,....7}andletP(1)denotethepowersetofA.Ifthe
numberoffunctionsf:A→P(A)suchthata∈f(a),∀a∈
Aismn,mandn∈Nandmisleast,thenm+nisequalto______
[30-Jan-2024Shift1]
Answer:44
Solution:
-------------------------------------------------------------------------------------------------
Question8
Ifthedomainofthefunctionf(x)=loge is(α,β],then
thevalueof5β−4αisequalto
[30-Jan-2024Shift2]
Options:
A.
10
B.
12
C.
11
D.
9
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question9
Letf:R→Rbeafunctiondefinedf(x)= andg(x)=
f(f(f(f(x))))then18
[30-Jan-2024Shift2]
Options:
A.
33
B.
36
C.
42
D.
39
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question10
Options:
A.
B.
19/20
C.
-4
D.
4
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question11
Ifthefunctionf:(−∞,−1]⟶(a,b]definedbyf(x)= isone-one
andonto,thenthedistanceofthepoint
P(2b+4,a+2)fromthelinex+e−3y=4is:
[31-Jan-2024Shift2]
Options:
A.
B.
C.
D.
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question12
[1-Feb-2024Shift1]
Options:
A.
one-onebutnotonto
B.
neitherone-onenoronto
C.
ontobutnotone-one
D.
bothone-oneandonto
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question13
Ifthedomainofthefunctionf(x)= thenα2+
β3isequalto:
[1-Feb-2024Shift2]
Options:
A.
140
B.
175
C.
150
D.
125
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question14
LetA = {1,2,3,4, ..., 10}andB = {0,1,2,3,4}.Thenumberof
elementsintherelationR = { (a,b) A×A:2(ab)2+3(ab) B}is
______.
[6-Apr-2023shift1]
Answer:18
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question15
LetA = {0,34,6,7,8,9,10}andRbetherelationdefinedonAsuch
thatR = {x,y) A×A:xyisoddpositiveintegerorx y=2}.The
minimumnumberofelementsthatmustbeaaddedtotherelationR,so
thatitisasymmetricrelation,isequalto______.
A= {1,2,3, ..... . 10}
B= {0,1,2,3,4}
R= {(a,b) A×A:2(ab)2+3(ab) B}
Now 2(ab)2+3(ab) = (ab)(2(ab) + 3)
a=b or a b= 2
When a =b10 orderpairs
When a b= 28 orderpairs
Total =18
[8-Apr-2023shift1]
Answer:19
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question16
LetA = {1,2,3,4,5,6,7}.Thentherelation
R= {(x,y) A×A:x+y=7}is
[8-Apr-2023shift2]
Options:
A.Symmetricbutneitherreflexivenortransitive
B.Transitivebutneithersymmetricnorreflexive
C.Anequivalencerelation
D.Reflexivebutneithersymmetricnortransitive
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question17
LetA = {2,3,4}andB = {8,9,12}.Thenthenumberofelementsin
therelationR = { ((a1,b1), (a2,b2)) ( A×.B,A×B) : a1dividesb2and
a2dividesb1}is
[10-Apr-2023shift2]
Options:
A.18
B.24
A= {0,3,4,6,7,8,9,10}3,7,9odd
R= {xy=odd +veor x y=2}0,4,6,8,10 even
3C15C1=15 + (6,4), (8,6), (10,8), (9,7)
Minmorderedpairstobeaddedmustbe
:15 +4=19
R= {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
C.12
D.36
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question18
LetA = {1,3,4,6,9}andB = {2,4,5,8,10}.LetRbearelation
definedonA ×BsuchthatR = { ( (a1,b1), ( a2,b2...)):a1b2and
b1a2}.ThenthenumberofelementsinthesetRis
[11-Apr-2023shift2]
Options:
A.52
B.160
C.26
D.180
Answer:B
Solution:
Solution:
a1dividesb2
Eachelementshas2choices
3×2=6
a2dividesb1
Eachelementshas2choices
3×2=6
Total =6×6=36
Leta1=15choicesofb2
a1=34choicesofb2
a1=44choicesofb2
a1=62choicesofb2
a1=91choicesofb2
For(a1,b2)16ways.
Similarly,b1=24choicesofa2
b1=43choicesofa2
b1=52choicesofa2
-------------------------------------------------------------------------------------------------
Question19
Thenumberoftherelations,ontheset{1,2,3}containing(1,2)and
(2,3),whicharereflexiveandtransitivebutnotsymmetric,is________.
[12-Apr-2023shift1]
Answer:3
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question20
LetA = {−4, 3, 2,0,1,3,4}andR = { (a,b) A×A:b= | a| .or
2=a+1}bearelationonA.Thentheminimumnumberofelements,
thatmustbeaddedtotherelationRsothatitbecomesreflexiveand
symmetric,is________
[13-Apr-2023shift2]
Answer:7
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question21
b1=81choicesofa2
RequiredelementsinR=160
A= {1,2,3}
ForReflexive(1,1)(2,2), (3,3) R
Fortransitive:(1,2)and(2,3) R (1,3) R
Notsymmetric:(2,1)and(3,2) R
R1= {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)}
R2= {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)(2,1)}
R3= {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)(2,1)}
R= [ (−4,4), (−3,3), (3, 2), (0,1), (0,0), (1,1),
(4,4), (3,3) }
Forreflexive,add⇒(−2, 2), (−4, 4), (−3, 3)
Forsymmetric,add⇒(4, 4), (3, 3), (−2,3), (1,0)
LetA = {1,2,3,4}andRbearelationonthesetA ×Adefinedby
R= { ( (a,b, (c,d) : 2a +3b =4c +5d }.Thenthenumberofelementsin
Ris________
[15-Apr-2023shift1]
Answer:6
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question22
Let5f (x) + 4f 1
x=1
x+3,x>0.Then18 2
1f(x)dxisequalto:
[6-Apr-2023shift1]
Options:
A.10loge26
B.10loge2+6
C.5loge23
D.5loge2+3
Answer:A
Solution:
Solution:
( )
A= {1,2,3,4}
R= {(a,b), (c,d)}
2a +3b =4c +5d =α let
2a = {2,4,6,8}4c = {4,8,12,16}
3b = {3,6,9,12}5d = {5,10,15,20}
2a +3b =
5 8 11 14
7 10 13 16
9 12 15 18
11 14 17 20
4c +5d
9 14 19 24
13 18...
17 22....
21 26....
Possiblevalueofα=9,13,14,14,17,18
Pairsof{(a,b), (c,d)} = 6
{ } { }
5f (x) + 4f 1
x=1
x+3...(1)
x1
x
5f 1
x+4f (x) = x+3...(2)
(1) × 5 (2) × 4
( )
( )
-------------------------------------------------------------------------------------------------
Question23
LetA = {x : [x+3] + [x+4] 3},
B=x : 3x
r=1
3
10x
x3
<33x ,where[t]denotesgreatest
integerfunction.Then,
[6-Apr-2023shift1]
Options:
A.A B,AB
B.A B=φ
C.A =B
D.B C,AB
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question24
LetthesetsAandBdenotethedomainandrangerespectivelyofthe
functionf (x) = 1
√[x] x,where[x]denotesthesmallestintegergreater
thanorequaltox.Thenamongthestatements:
(S1) : AB= (1,) Nand
{ ( ) }
f(x) = 5
9x 4
9x+1
3
18
2
1
f(x)dx =18 5
9ln 2 4
9×3
2+1
3
=10 ln 2 6
( )
A= {x: [x+3] + [x+4] 3}
2[x] + 73
2[x] 4
[x] 2x< 1...(A)
B=x:3x
r=1
3
10x
x3
<33x
3x
r1
3
10x
x3
<33x
32x 310
10
x3
1
9
x3<35x
362x <335x
62x <35x
3< 3x
1
10 )x< 1...(B)
A=B
{ ( ) }
( )
( )
( )
(S2):A B= (1,)
[6-Apr-2023shift2]
Options:
A.only(S1)istrue
B.neither(S1)nor(S2)istrue
C.only(S2)istrue
D.both(S1)and(S2)aretrue
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question25
Letf ,g: {1} befunctionsdefinedbyf (a) = α,whereαisthe
maximumofthepowersofthoseprimespsuchthatpαdividesa,and
g(a) = a+1,foralla {1}.Then,thefunctionf +gis
[27-Jul-2022-Shift-1]
Options:
A.one-onebutnotonto
B.ontobutnotone-one
f(x) = 1
√[x] x
IfxI[x] = [x](greatestintegerfunction)
IfxI[x] = [x] + 1
f(x) =
1
[x] xxI
1
[x] + 1xxI
f(x) =
1
{x}xI(doesnotexist )
1
1 {x}xI
.
domainof f(x) = RI
Now, f(x) = 1
1 {x},xI
x< {x} < 1
0<11 {x} < 1
1
1 {x}>1
Range(1,)
A=RI
B= (1∞)
So, A B= (1,) N
AB (1,)
S1 isonlycorrect.
{
{
C.bothone-oneandonto
D.neitherone-onenoronto
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question26
Ifdomainofthefunctionloge
6x2+5x +1
2x 1+cos12x23x +4
3x 5is
(α,β) (γ,δ],then,18(α2+β2+γ2+δ2)isequalto
[8-Apr-2023shift2]
Answer:20
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question27
( ) ( )
f,g:N {1} Ndefinedas
f(a) = α,whereαisthemaximumpowerofthoseprimespsuchthatpαdividesa.
g(a) = a+1
Now,
f(2) = 1,g(2) = 3 (f+g)(2) = 4
f(3) = 1,g(3) = 4 (f+g)(3) = 5
f(4) = 2,g(4) = 5 (f+g)(4) = 7
f(5) = 1,g(5) = 6 (f+g)(5) = 7
(f+g)(5) = (f+g)(4)
f+gisnotone-one
Now,∵fmin =1,gmin =3
So,theredoesnotexistanyxN {1}suchthat(f+g)(x) = 1,2,3
f+gisnotonto
6x2+5x +1
2x 1>0
(3x +1)(2x +1)
2x 1>0
x1
2,1
25
3,...(B)
x<5
3...(C)
ABC1
2,1
31
2,1
2
So 18(α2+β2+γ2+δ2) = 18 1
4+1
9+1
4+1
2
=18 +2=20
[ ] ( )
( ) ( ]
( )
LetR = {a,b,c,d,e}andS = {1,2,3,4}.Totalnumberofonto
functionsf :RSsuchthatf(a) 1,isequalto_______.
[8-Apr-2023shift2]
Answer:180
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question28
Ifthedomainofthefunctionf(x) = sec12x
5x +3is[α,β)U(γ,δ],then
| +10(β+γ) + 21δ|isequalto________.
[10-Apr-2023shift2]
Answer:24
Solution:
Solution:
( )
Totalontofunction
5
3× 4=240
Nowwhenf(a) = 1
4+4
22× x3 =24 +36 =60.
sorequiredfn=240 60 =180
f(x) = sec12x
5x +3
2x
5x +3
2x
5x +312x 5x +3
(2x)2 (5x +3)20
(7x +3)(−3x 3) 0
domain 1,3
53
5,3
7
α= 1,β=3
5,γ=3
5,δ=3
7
+10(β+γ) + 21δ = 3
3+10 6
5+3
721 = 24
| |
| | | | | |
[ ) ( ]
( ) ( )
-------------------------------------------------------------------------------------------------
Question29
Thedomainofthefunctionf (x) = 1
[x]23[x] 10 is(where[x]denotesthe
greatestintegerlessthanorequaltox)
[11-Apr-2023shift2]
Options:
A.(−, 3] [6,)
B.(−, 2) (5,)
C.(−, 3] (5,)
D.(−, 2) [6,)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question30
LetA = {1,2,3,4,5}andB = {1,2,3,4,5,6}.Thenthenumberof
functionsf :ABsatisfyingf (1) + f(2) = f(4) 1isequalto________.
[11-Apr-2023shift2]
Answer:360
Solution:
Solution:
F(x) = 1
[x]23[x] 10
[x]23[x] 10 >0
([x] + 2)([x] 5) > 0
[x] < 2 or [x] > 5
[x] 3 or [x] 6
x< 2 or x 6
x (−, 2) [6,)
f(1) + f(2) + 1=f(4) 6
f(1) + f(2) 5
Case(i)f(1) = 1f(2) = 1,2,3,44mappings
Case(ii)f(1) = 2f(2) = 1,2,33mappings
Case(iii)f(1) = 3f(2) = 1,22mappings
Case(iv)f(1)4f(2) = 11mapping
-------------------------------------------------------------------------------------------------
Question31
LetDbethedomainofthefunctionf (x) = sin 1log3x
6+2log3x
5x .If
therangeofthefunctiong :DRdefinedbyg(x) = x [x], ( [x]isthe
greatestintegerfunction),is(α,β),thenα2+5
βisequalto
[12-Apr-2023shift1]
Options:
A.46
B.135
C.136
D.45
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question32
Forx R,tworealvaluedfunctionsf(x)andg(x)aresuchthat,
g(x) = x+1andfog(x) = x+3 x.Thenf(0)isequalto
( ( ) )
f(5)&f(6)bothhave6mappingseach
Numberoffunctions = (4+3+2+1) × 6×6=360
6+2log3x
5x >0&x>0&x1
3
thisgives x 0,1
27 .. . (1)
1log3x
6+2log3x
5x 1
3x 6+2log3x
5x 1
3x
15x2+6+2log3x0 6 +2log3x+5
30
x0,1
27 .. . (2)x3
23
6... . (3)
form(1),(2)&(3)
x3
23
6,1
27
αissmallpositivequantity
&β=1
27
α2+5
βisjustgreaterthan135
( )
( )
( )
[ )
[13-Apr-2023shift1]
Options:
A.5
B.0
C.-3
D.1
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question33
Forthedifferentiablefunctionf :R {0} R,let
3f (x) + 2f 1
x=1
x10,then f (3) + f1
4isequalto
[13-Apr-2023shift1]
Options:
A.13
B. 29
5
C. 33
5
D.7
Answer:A
Solution:
Solution:
( ) | ( ) |
g(x) = x+1
fog (x) = x+3 x
= (√x+1)23(√x+1) + 5
=g2(x) 3g(x) + 5
f(x) = x23x +5
f(0) = 5
But,ifweconsiderthedomainofthecompositefunctionfog(x)theninthatcasef(0)willbenotdefinedasg(x)cannot
beequaltozero.
3f(x) + 2f 1
x=1
x10 ×3
2f(x) + 3f 1
x=x10 ×2
5f(x) = 3
x2x 10
f(x) = 1
5
3
x2x 10
[ ( ) ]
[ ( ) ]
( )
-------------------------------------------------------------------------------------------------
Question34
Therangeoff (x) = 4sin 1x2
x2+1is
[13-Apr-2023shift2]
Options:
A.[0,π)
B.[0,π]
C.[0,)
D.[0,]
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question35
Ifthedomainofthefunction
f(x) = loge(4x2+11x +6) + sin 1(4x +3) + cos110x +6
3is(α,β],then
36 |α+β|isequalto
[15-Apr-2023shift1]
Options:
A.72
B.63
C.45
( )
( )
f(x) = 1
53
x22
f(3) + f1
4=1
5(1610) + 1
5(−48 2)
= | 310 | = 13
( )
| ( ) | | |
f(x) = 4sin 1x2
1+x2
0x2
1+x2<1
0sin 1x2
1+x2<π
2
04sin 1x2
1+x2<
Range:[0,)
( )
( )
( )
D.54
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question36
TherelationR = {(a,b) : gcd(a,b) = 1,2a b,a,b ℤ}is:
[24-Jan-2023Shift1]
Options:
A.transitivebutnotreflexive
B.symmetricbutnottransitive
C.reflexivebutnotsymmetric
D.neithersymmetricnortransitive
Answer:D
Solution:
Solution:
f(x) = ln(4x2+11x +6) + sin 1(4x +3)
+cos110x +6
3
(i) 4x2+11x +6>0
4x2+8x +3x +6>0
(4x +3)(x+2) > 0
x (−, 2) 3
4,
(ii)4x +3 [−1,1]
x [−1, 12]
(iii) 10x +6
3 [−1,1]
x 9
10, 3
10
x 3
4, 1
2α= 3
4,β= 1
2
α+β= 5
4
36 |α+β| = 45
( )
( )
[ ]
( ]
Reflexive:(a,a)gcdof(a,a) = 1
WhichisnottrueforeveryaE Z.
Symmetric:
Takea=2,b=1 gcd(2,1) = 1
Also2a =4b
Nowwhena=1,b=2 gcd(1,2) = 1
Alsonow2a =2=b
Hencea=2b
RisnotSymmetric
Transitive:
Leta=14,b=19,c=21
gcd(a,b) = 1
gcd(b,c) = 1
gcd(a,c) = 7
-------------------------------------------------------------------------------------------------
Question37
LetRbearelationdefinedonNasaRbis2a +3bisamultipleof
5,a,b .ThenRis
[29-Jan-2023Shift2]
Options:
A.notreflexive
B.transitivebutnotsymmetric
C.symmetricbutnottransitive
D.anequivalencerelation
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question38
Theminimumnumberofelementsthatmustbeaddedtotherelation
R= {(a,b), (b,c)}ontheset{a,b,c}sothatitbecomessymmetricand
transitiveis:
[30-Jan-2023Shift1]
Options:
A.4
B.7
Hencenottransitive
Risneithersymmetricnortransitive.
aRa 5aismultipleit5
Soreflexive
aRb 2a +3b =,
NowbRa
2b +3a =2b + 3b
23
=15
2α5
2b=5
2( b)
=5
2(2a +2b )
=5(a+bα)
Hencesymmetric
aRb 2a +3b = .
bRc 2b +3c =
Now 2a +5b +3c =5(α+β)
2a +5b +3c =5(α+β)
2a +3c =5(α+βb)
aRc
Hencerelationisequivalencerelation.
( )
C.5
D.3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question39
LetRbearelationonN ×Ndefinedby(a,b)R(c,d)ifandonlyifad
(bc) = bc(ad).ThenRis
[31-Jan-2023Shift1]
Options:
A.symmetricbutneitherreflexivenortransitive
B.transitivebutneitherreflexivenorsymmetric
C.reflexiveandsymmetricbutnottransitive
D.symmetricandtransitivebutnotreflexive
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
ForSymmetric(a,b), (b,c) R
(b,a), (c,b) R
ForTransitive(a,b), (b,c) R
(a,c) R
Now
1.Symmetric
(a,c) R (c,a) R
2.Transitive
(a,b), (b,a) R
(a,a) R&(b,c), (c,b) R
(b,b)&(c,c) R
∴Elementstobeadded
(b,a) (c,b) (a,c) (c,a)
, (a,a) (b,b) (c,c)
Numberofelementstobeadded = 7
{ }
(a,b)R(c,d) ad (bc) = bc(ad)
Symmetric:
(c,d)R(a,b) cb(da) = da(cb)
Symmetric
Reflexive:
(a,b)R(a,b) ab(ba) ba(ab)
Notreflexive
Transitive:(2,3)R(3,2)and(3,2)R(5,30)but
((2,3), (5,30)) R⇒Nottransitive
Question40
Amongtherelations
S= (a,b) : a,b {0}, 2+a
b>0
AndT = {(a,b) : a,b ℝ, a2b2Z},
[31-Jan-2023Shift2]
Options:
A.SistransitivebutTisnot
B.TissymmetricbutSisnot
C.NeitherSnorTistransitive
D.BothSandTaresymmetric
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question41
LetRbearelationon,givenbyR = { (a,b) : 3a 3b + 7isan
irrationalnumber}.ThenRis
[1-Feb-2023Shift1]
Options:
A.Reflexivebutneithersymmetricnortransitive
B.Reflexiveandtransitivebutnotsymmetric
C.Reflexiveandsymmetricbutnottransitive
D.Anequivalencerelation
Answer:A
Solution:
{ }
ForrelationT=a2b2= I
Then,(b,a)onrelationR
b2a2= I
Tissymmetric
S= (a,b) : a,bR {0}, 2+a
b>0
2+a
b>0a
b> 2, b
a<1
2
If(b,a) Sthen
2+b
anotnecessarilypositive
Sisnotsymmetric
{ }
Solution:
-------------------------------------------------------------------------------------------------
Question42
LetP(S)denotethepowersetofS = {1,2,3, ..., 10}.Definethe
relationsR1andR2onP(S)asAR1Bif(ABc) (BA9) = andAR2Bif
ABc=B Ac, A,BP(S).Then:
[1-Feb-2023Shift2]
Options:
A.bothR1andR2areequivalencerelations
B.onlyR1isanequivalencerelation
C.onlyR2isanequivalencerelation
D.bothR1andR2arenotequivalencerelations
Answer:A
Solution:
Solution:
Checkforreflexivity:
As3(a-a)+7= 7whichbelongstorelationsorelationisreflexive
Checkforsymmetric:
Takea=7
3,b=0
Now(a,b) Rbut(b,a) R
As3(ba) + 7=0whichisrationalsorelationisnotsymmetric.
CheckforTransitivity:
Take(a,b)as 7
3,1
&(b,c)as 1,27
3
Sonow(a,b) R&(b,c) Rbut(a,c) Rwhichmeansrelationisnottransitive
( )
( )
S= {1,2,3, ... . .10}
P(S) = powersetof S
AR,BA
B
AB=φ
R1 isreflexive,symmetric
Fortransitive
A
B
AB=φ; {a} = φ= {b}A=B
B
C
BC=φB=C
A=C equivalence.
R2A
B=
AB
R2Reflexive,symmetric
fortransitive
( ) ( )
( ) ( )
( ) ( )
-------------------------------------------------------------------------------------------------
Question43
Theequationx24x + [x] + 3=x[x],where[x]denotesthegreatest
integerfunction,has:
[24-Jan-2023Shift1]
Options:
A.exactlytwosolutionsin(−,)
B.nosolution
C.auniquesolutionin(−,1)
D.auniquesolutionin(−,)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question44
Letf (x)beafunctionsuchthatf (x+y) = f(x) f(y)forallx,yN.If
f(1) = 3and n
k=1f(k) = 3279,thenthevalueofnis
[24-Jan-2023Shift2]
Options:
A.6
B.8
C.7
D.9
A
B=
AB {a,c,d} = {b,c,d}
{a} = {b}∴A=B
B
C=
BCB=C
A=CA
C=
ACEquivalence
x24x + [x] + 3=x[x]
x24x +3=x[x] [x]
(x1)(x3) = [x] . (x1)
x=1 or x 3= [x]
x [x] = 3
{x} = 3 (NotPossible)
Onlyonesolutionx=1in(−,)
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question45
Iff (x) = 22x
22x +2,xRthenf 1
2023 +f2
2023 + ...... + f2022
2023 equalto
[24-Jan-2023Shift2]
Options:
A.2011
B.1010
C.2010
D.1011
Answer:D
Solution:
Solution:
( ) ( ) ( )
f(x+y) = f(x) f(y) x,yN,f(1) = 3
f(2) = f2(1) = 32
f(3) = f(1)f(2) = 33
f(4) = 34
f(k) = 3k
n
k=1
f(k) = 3279
f(1) + f(2) + f(3) + ......... + f(k) = 3279
3+32+33+ ........ . 3k=3279
3(3k1)
31=3279
3k1
2=1093
3k1=2186
3k=2187
k=7
f(x) = 4x
4x+2
f(x) + f(1x) = 4x
4x+2+41x
41x+2
=4x
4x+2+4
4+2(4x)
=4x
4x+2+2
2+4x
=1
f(x) + f(1x) = 1
Now f 1
2023 +f2
2023 +f3
2023 + .......+
.......... + f 1 3
2023 +f 1 2
2023 +f 1 1
2023
Nowsumoftermsequidistantfrombeginningandendis1
Sum =1+1+1+ ......... + 1 (1011times)
( ) ( ) ( )
( ) ( ) ( )
-------------------------------------------------------------------------------------------------
Question46
Forsomea,b,c ,letf (x) = ax 3andg(x) = xb+c,x .If
(fog )1(x) = x7
2
13then(fog)(ac) + (gof )(b)isequalto________.
[25-Jan-2023Shift1]
Answer:2039
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question47
Letf : beafunctiondefinedbyf (x) =
logm{√2(sin x cos x) + m2},forsomem,suchthattherangeoffis
[0,2].Thenthevalueofmis_______
[25-Jan-2023Shift2]
Options:
A.5
B.3
C.2
D.4
Answer:A
Solution:
Solution:
( )
=1011
Letfog(x) = h(x)
h1(x) = x7
2
1
3
h(x) = fog(x) = 2x3+7
fog (x) = a(xb+c) 3
a=2,b=3,c=5
fog (ac) = fog(10) = 2007
g(f(x) = (2x 3)3+5.
gof(b) = gof(3) = 32
sum =2039
( )
Since,
2sin x cos x 2
-------------------------------------------------------------------------------------------------
Question48
Thenumberoffunctionsf : {1,2,3,4} {a : | a| 8}satisfying
f(n)+1
nf(n+1) = 1, n {1,2,3}is
[25-Jan-2023Shift2]
Options:
A.3
B.4
C.1
D.2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question49
Letf(x) = 2xn+λ,λ ℝ, n ,andf(4) = 133,f (5) = 255.Thenthesum
ofallthepositiveintegerdivisorsof(f(3) f(2))is
[25-Jan-2023Shift2]
Options:
A.61
B.60
2 2(sin x cos x) 2
(Assume 2(sin x cos x) = k)
2k2... (i)
f(x) = logm(k+k2)
Given,
0f(x) 2
0logmin(k+m2) 2
1k+m2m
m+3k2... ..ii)
Fromeq.(i)&(ii),weget−m+3= 2
m=5
f: {1,2,3,4} {a:|a| 8}
f(n) + 1
nf(n+1) = 1, n {1,2,3}
f(n+1)mustbedivisiblebyn
f(4) 6, 3,0,3,6
f(3) 8, 6, 4, 2,0,2,4,6,8
f(2) 8, ..............., 8
f(1) 8, ..............., 8
f(4)
3mustbeoddsincef(3)shouldbeeventherefore2solutionpossible.
C.58
D.59
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question50
Letf :RRbeafunctionsuchthatf (x) = x2+2x +1
x2+1.Then
[29-Jan-2023Shift1]
Options:
A.f (x)ismany-onein(−, 1)
B.f (x)ismany-onein(1,)
C.f (x)isone-onein[1,)butnotin(−,)
D.f (x)isone-onein(−,)
Answer:C
Solution:
Solution:
f(x) = 2xn+λ
f(4) = 133
f(5) = 255
133 =2×4n+λ...(1)
255 =2×5n+λ...(2)
(2) (1)
122 =2(5n4n)
5n4n=61
n=3&λ=5
Now,f(3) f(2) = 2(3323) = 38
NumberofDivisorsis1,2,19,38; &theirsumis60
-------------------------------------------------------------------------------------------------
Question51
Thedomainoff (x) = log(x+1)(x2)
e2logex (2x +3),xRis
[29-Jan-2023Shift1]
Options:
A.ℝ {13}
B.(2,) {3}
C.(−1,) {3}
D.ℝ {3}
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question52
Considerafunctionf : ,satisfying
f(1) + 2f (2) + 3f (3) + ... + xf (x) = x(x+1)f(x); x2withf (1) = 1.Then
1
f(2022)+1
f(2028)isequalto
x2>0x>2
x+1>0x> 1
x+11x0 and x >0
Denominator
x22x 30
(x3)(x+1) 0
x 1,3
SoAns(2,) {3}
[29-Jan-2023Shift2]
Options:
A.8200
B.8000
C.8400
D.8100
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question53
Supposef :R (0,)beadifferentiablefunctionsuchthat
5f(x+y) = f(x) f(y), x,yR.Iff (3) = 320,then 5
n=0f(n)isequalto:
[30-Jan-2023Shift1]
Options:
A.6875
B.6575
C.6825
D.6528
Answer:C
Solution:
Solution:
Givenforx2
f(1) + 2f (2) + .... + xf (x) = x(x+1)f(x)
replace x by x +1
x(x+1)f(x) + (x+1)f(x+1)
= (x+1)(x+2)f(x+1)
x
f(x+1)+1
f(x)=(x+2)
f(x)
xf (x) = (x+1)f(x+1) = 1
2,x2
f(2) = 1
4,f(3) = 1
6
Nowf(2022) = 1
4044
f(2028) = 1
4056
So, 1
f(2022)+1
f(2028)=4044 +4056 =8100
Option(3)
5f(x+y) = f(x) f(y)
-------------------------------------------------------------------------------------------------
Question54
LetS = {1,2,3,4,5,6}.Thenthenumberofonefunctionsf :SP(S),
whereP(S)denotethepowersetofS,suchthatf (n) f(m)wheren <m
is________.
[30-Jan-2023Shift1]
Answer:3240
Solution:
Solution:
5f(0) = f(0)2f(0) = 5
5f(x+1) = f(x) f(1)
f(x+1)
f(x)=f(1)
5
f(1)
f(0)f(2)
f(1)f(3)
f(2)=f(1)
5
3
320
5=(f(1))3
53f(1) = 20
5f(x+1) = 20 f(x) f(x+1) = 4f(x)
5
n=0
f(n) = 5+5.4 +5.42+5.43+5.44+5.45
=5[461]
3=6825
( )
LetS= {1,2,3,4,5,6},thenthenumberofone-onefunctions,f:SP(S),whereP(S)denotesthepowersetofS,such
thatf(n) < f(m)wheren<mis
n(S) = 6
P(S) = φ{1}.. . {6} {1,2} ...
{5,6} ... {1,2,3,4,5,6}
64 elements
case−1
f(6) = Si.e.1option,
f(5) = any5elementsubsetAofSi.e.6options,
f(4) = any4elementsubsetBofAi.e.5options,
f(3) = any3elementsubsetCofBi.e.4options,
f(2) = any2elementsubsetDofCi.e.3options,
f(1) = any1elementsubsetEofDoremptysubseti.e.3
options,
Totalfunctions = 1080
Case-2
f(6) = any5elementsubsetAofSi.e.6options,
f(5) = any4elementsubsetBofAi.e.5options,
f'(4)=any3elementsubsetCofBi.e.4options,
f(3) = any2elementsubsetDofCi.e.3options,
f'(2) = any1elementsubsetEofDi.e.2options,
f(1) = emptysubseti.e.1option
Totalfunctions = 720
Case−3
f(6) = S
f(5) = any4elementsubsetAof'Si.e.15options,
f(4) = any3elementsubsetBofAi.e.4options,
f(3) = any2elementsubsetCofBi.e.3options,
f(2) = any1elementsubsetDofCi.e.2options,
f(1) = emptysubseti.e.1option
Totalfunctions = 360
Case−4
{ }
-------------------------------------------------------------------------------------------------
Question55
Letf 1(x) = 3x +2
2x +3,xR3
2
Forn 2,definefn(x) = f10fn1(x).
Iff5(x) = ax +b
bx +a,gcd(a,b) = 1,thena +bisequalto________.
[30-Jan-2023Shift1]
Answer:3125
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question56
Therangeofthefunctionf (x) = 3x+ 2+xis
[30-Jan-2023Shift2]
Options:
{ }
f(6) = S
f(5) = any5elementsubsetAofSi.e.6options,
f(4) = any3elementsubsetBofAi.e.10options,
f(3) = any2elementsubsetCofBi.e.3options,
f(2) = any1elementsubsetDofCi.e.2options,
f(1) = emptysubseti.e.1option
Totalfunctions = 360
Case−5
f(6) = S
f(5) = any5elementsubsetAofSi.e.6options,
f(4) = any4elementsubsetBofAi.e.5options,
f(3) = any2elementsubsetCofBi.e.6options,
f(2) = any1elementsubsetDofCi.e.2options,
f(1) = emptysubseti.e.1option
Totalfunctions = 360
Case-6
f(6) = S
f(5) = any5elementsubsetAofSi.e.6options,
f(4) = any4elementsubsetBofAi.e.5options,
f(3) = any3elementsubsetCofBi.e.4options,
f(2) = any1elementsubsetDofCi.e.3options,
f(1) = emptysubseti.e.1option
Totalfunctions = 360
∴Numberofsuchfunctions = 3240
f1(x) = 3x +2
2x +3
f2(x) = 13x +12
12x +13
f3(x) = 63x +62
62x +63
f5(x) = 1563x +1562
1562x +1563
a+b=3125
A.[√5, 10]
B.[22, 11]
C.[√5, 13]
D.[√2, 7]
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question57
LetA = {1,2,3,5,8,9}.Thenthenumberofpossiblefunctionsf :AA
suchthatf(mn) = f(m) f(n)foreverym,nAwithm nAisequal
to_______.
[30-Jan-2023Shift2]
Answer:432
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question58
Ifthedomainofthefunctionf (x) = [x]
1+x2,where[x]isgreatestinteger
x,is[2,6),thenitsrangeis
[31-Jan-2023Shift1]
Options:
A. 5
26,2
59
29,27
109,18
89,9
53
( ] { }
y2=3x+2+x+2(3x)(2+x)
=5+2 6 +xx2
y2=5+225
4x1
2
2
ymax = 5+5= 10
ymin = 5
( )
f(1) = 1;f(9) = f(3) × f(3)
i.e.,f(3) = 1or3
Totalfunction = 1×6×2×6×6×1=432
B. 5
26,2
5
C. 5
37,2
59
29,27
109,18
89,9
53
D. 5
37,2
5
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question59
Theabsoluteminimumvalue,ofthefunction
f(x) = x2x+1| +[x2x+1],where[t]denotesthegreatestinteger
function,intheinterval[−1,2],is:
[31-Jan-2023Shift2]
Options:
A. 3
4
B. 3
2
C. 1
4
D. 5
4
Answer:A
Solution:
( ]
( ] { }
( ]
f(x) = 2
1+x2x [2,3)
f(x) = 3
1+x2x [3,4)
f(x) = 4
1+x2x [4,5)
f(x) = 5
1+x2x [5,6)
Solution:
-------------------------------------------------------------------------------------------------
Question60
Letf : {2,6} berealvaluedfunctiondefinedasf (x) = x2+2x +1
x28x +12.
Thenrangeoff is
[31-Jan-2023Shift2]
Options:
A. , 21
4 [0,)
B. , 21
4 (0,)
C. , 21
421
4,
D. , 21
4 [1,)
Answer:A
Solution:
Solution:
( ]
( )
( ] [ )
( ]
f(x) = | x2x+1| +[x2x+1]; x [−1,2]
Letg(x) = x2x+1
=x1
2
2+3
4
| x2x+1|and [x2x+2]
Bothhaveminimumvalueatx=12
Minimum f(x) = 3
4+0
=3
4
( )
Lety=x2+2x +1
x28x +12
Bycrossmultiplying
yx28 xy +12y x22x 1=0
x2(y1) x(8y +2) + (12y 1) = 0
Case1,y1
D0
(8y +2)24(y1)(12y 1) 0
y(4y +21) 0
y ,21
4 [0,) {1}
Case2,y=1
x2+2x +1=x28x +12
10x =11
x=11
10 So, y canbe 1
Hencey ,21
4 [0,)
( ]
( ]
-------------------------------------------------------------------------------------------------
Question61
Letf :R {0,1} Rbeafunctionsuchthatf (x) + f1
1x=1+x.
Thenf (2)isequalto:
[1-Feb-2023Shift2]
Options:
A. 9
2
B. 9
4
C. 7
4
D. 7
3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question62
Letf : bedefinedasf (x) = x1andg : {1, 1} be
definedasg(x) = x2
x21.Thenthefunctionfogis:
[26-Jun-2022-Shift-2]
Options:
A.one-onebutnotonto
B.ontobutnotone-one
C.bothone-oneandonto
D.neitherone-onenoronto
Answer:D
( )
f(x) + f1
1x=1+x
x=2f(2) + f(−1) = 3
x= 1f(−1) + f1
2=0...(2)
x=1
2f1
2+f(2) = 3
2...(3)
(1) + (3) (2) 2f(2) = 9
2
f(2) = 9
4
( )
( )
( )
Solution:
Letf :RRbeafunctiondefinedbyf (x) = 2e2x
e2x +e.
Then
f1
100 +f2
100 +f3
100 + ... + f99
100
isequalto____
[27-Jun-2022-Shift-1]
Answer:99
Solution:
Solution:
( ) ( ) ( ) ( )
Given,
f(x) = 2e2x
e2x +e
f(1x) = 2e2(1x)
e2(1s)+e
=
2e2
e2x
e2
e +e
=2e2
e2+e2x e
=2e2
e(e+e2x)
=2e
e+e2
f(x) + f(1x) = 2e2x
e2x +e+2e
e2x +e
=2(e2x +e)
e2x +e
=2......(1)
Now,
f1
100 +f99
100
=f1
100 +f 1 1
100
=2[asf(x) + f(1x) = 2]
f2
100 +f 1 2
100 =2
⁞
f49
100 +f 1 49
100 =2
∴Totalsum = 49 ×2
Remainingterm = f50
100 =f1
2
Putx=1
2inequation(1),weget
f1
2+f 1 1
2=2
2f 1
2=2
f1
2=1
Sum =49 ×2+1=99
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )
( )
Question63
Question64
LetS = {1,2,3,4,5,6,7,8,9,10}.Definef :SSas
f(n) = 2n ,if n =1, 2, 3, 4, 5
2n 11 ,if n =6, 7, 8, 9, 10,
Letg :SSbeafunctionsuchthatfog(n) = n+1 ,ifnisodd
n1 ,ifniseven
Theng(10)g(1) + g(2) + g(3) + g(4) + g(5) )isequalto
[27-Jun-2022-Shift-2]
Answer:190
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question65
Letafunctionf :NNbedefinedby
f(n) =
2n n =2, 4, 6, 8, ......
n1 n =3, 7, 11, 15, ......
n+1
2n=1, 5, 9, 13, .......
then,f is
[28-Jun-2022-Shift-1]
Options:
A.one-onebutnotonto
B.ontobutnotone-one
C.neitherone-onenoronto
{
{
[
f(n) = 2n n =1234 5
2n 11 n =678910.
f(1) = 2,f(2) = 4, ......, f(5) = 10
and f (6) = 1,f(7) = 3,f(8) = 5, ......., f(10) = 9
Now,f(g(n)) = n+1 if n isodd
n1 if n iseven .
f(g(10)) = 9g(10) = 10
f(g(1)) = 2g(1) = 1
. f (g(2)) = 1g(2) = 6
f(g(3)) = 4g(3) = 2
f(g(4)) = 3g(4) = 7
f(g(5)) = 6g(5) = 3
g(10)g(1) + g(2) + g(3) + g(4) + g(5) ) = 190
{
{
D.one-oneandonto
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question66
Theprobabilitythatarandomlychosenone-onefunctionfromtheset
{a,b,c,d}totheset{1,2,3,4,5}satisfiesf (a) + 2f (b)f(c) = f(d)is
:
[28-Jun-2022-Shift-2]
Options:
A. 1
24
B. 1
40
C. 1
30
D. 1
20
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question67
LetS = {1,2,3,4}.Thenthenumberofelementsintheset
{f:S×SS:f isontoandf (a,b) = f(b,a) a(a,b) S×S }is____
[28-Jun-2022-Shift-2]
Whenn=1,5,9,13then n+1
2willgivealloddnumbers.
Whenn=3,7,11,15......
n1willbeevenbutnotdivisibleby4
Whenn=2,4,6,8...
Then2nwillgiveallmultiplesof4
SorangewillbeN.
Andnotwovaluesofngivesamey,sofunctionisone-oneandonto.
Numberofone-onefunctionfrom{a,b,c,d}toset{1,2,3,4,5}is5P4=120n(s).
Therequiredpossiblesetofvalue(f(a),f(b), f(c), f(d) )suchthatf(a) + 2f (b) f(c) = f(d)are
(5,3,2,1), (5,1,2,3), (4,1,3,5), (3,1,4,5), (5,4,3,2)and(3,4,5,2)
n(E) = 6
∴Requiredprobability = n(E)
n(S)=6
120 =1
20
Answer:37
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question68
Thedomainofthefunctioncos1
2sin11
4x21
πis:
[29-Jun-2022-Shift-1]
Options:
A.R 1
2,1
2
B.(−, 1] [1,) {0}
C. ,1
21
2, {0}
D. ,1
21
2, {0}
Answer:D
Solution:
Solution:
(( ) )
{ }
( ) ( )
( ] [ )
Thereare16orderedpairsinS×S.Wewritealltheseorderedpairsin4setsasfollows.
A= {(1,1)}
B= {(1,4), (2,4), (3,4)(4,4), (4,3), (4,2), (4,1)}
C= {(1,3), (2,3), (3,3), (3,2), (3,1)}
D= {(1,2), (2,2), (2,1)}
AllelementsofsetBhaveimage4andonlyelementofAhasimage1.
AllelementsofsetChaveimage3or4andallelementsofsetDhaveimage2or3or4.
Wewillsolvethisquestionintwocases.
CaseI:WhennoelementofsetChasimage3.
Numberofontofunctions = 2(whenelementsofsetDhaveimages2or3)
CaseII:WhenatleastoneelementofsetChasimage3.
Numberofontofunctions = (231)(1+2+2) = 35
Totalnumberoffunctions = 37
1
2sin 11
4x21
π1
π
2sin 11
4x21π
2
⇒−11
4x211
1
4x21+10
1+4x21
4x210
( )
( )
-------------------------------------------------------------------------------------------------
Question69
Letc,kR.Iff (x) = (c+1)x2+ (1c2)x+2kand
f(x+y) = f(x) + f(y) xy,forallx,yR,thenthevalueof
|2(f(1) + f(2) + f(3) + ...... + f(20))|isequalto____
[29-Jun-2022-Shift-1]
Answer:3395
Solution:
Solution:
-------------------------------------------------------------------------------------------------
4x2
4x210
4x2
(2x +1)(2x 1)0..... . (1)
x α, 1
2 {0} 1
2,α
And 1
4x2110
14x2+1
4x210
24x2
4x210
2x21
4x210
(√2x+1)(√2x1)
(2x +1)(2x 1)0
x α, 1
2 1
2,1
21
2,α
From(3)and(4),weget
x α, 1
21
2,α {0}
( ) ( )
( ) ( ) ( )
[ ) [ )
f(x)ispolynomial
Puty=1xingivenfunctionalequationweget
f x +1
x=f(x) + f1
x1
(c+1)x+1
x
2+ (1c2)x+1
x+2K
= (c+1)x2+ (1c2)x+2K + (c+1)1
x2+ (1c2)1
x+2K 1
2(c+1) = 2K 1.... . (1)
andputx=y=0weget
f(0) = 2+f(0) 0f(0) = 0k=0
k=0 and 2c = 3c= 32
f(x) = x2
25x
4=1
4(5x +2x2)
2
20
i=1
f(i) = 2
4
5.20.21
2+2.20.21.41
6
=1
2(2730 +5740)
= 6790
2=3395.
( ) ( )
( ) ( )
|||( ) |
| |
| |
Question70
Letf (x)andg(x)betworealpolynomialsofdegree2and1respectively.
Iff (g(x)) = 8x22xandg(f(x)) = 4x2+6x +1,thenthevalueof
f(2) + g(2)is_____
[29-Jun-2022-Shift-2]
Answer:18
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question71
Thedomainofthefunction
f(x) =
cos1x25x +6
x29
loge(x23x +2)is:
[24-Jun-2022-Shift-1]
Options:
A.(−,1) (2,)
B.(2,)
C. 1
2,1 (2,)
D. 1
2,1 (2,) 3,3+ 5
2,3 5
2
Answer:D
Solution:
Solution:
( )
[ )
[ ) { }
f(g(x) = 8x22x.
g(f(x) = 4x2+6x +1.
So, g(x) = 2x 1
&f(x) = 2x2+3x +1
f(2) = 8+6+1=15
Ans.18
-------------------------------------------------------------------------------------------------
Question72
Thenumberofone-onefunctionsf : {a,b,c,d} {0,1,2, ......, 10}
suchthat2f (a) f(b) + 3f (c) + f(d) = 0is
[24-Jun-2022-Shift-1]
Answer:31
Solution:
f(d)can'tbe9and10asif
f
(
d
) = 9or10then
f
(
b
) = 2+9=11or
f
(
b
) = 2+10 =12,whichisnotpossibleashereany
function'smaximumvaluecanbe10.
Nofunctionispossibleinthiscase.
Totalpossiblefunctionswhenf(c)=0andf(a)=1,2,3and4are=7+5+3+2=17
CaseII:
(1)Whenf(c)=1andf(a)=0then
3×1+2×0+f(d)=f(b)
⇒3+f(d)=f(b)
Possiblevalueoff(d)=2,3,4,5,6,7
Totalpossiblefunctionsinthiscase=6
(2)Whenf(c)=1andf(a)=2then
3×1+2×2+f(d)=f(b)
⇒7+f(d)=f(b)
Possiblevalueoff(d)=0,3
Totalpossiblefunctionsinthiscase=2
(3)Whenf(c)=1andf(a)=3then
3×1+2×3+f(d)=f(b)
⇒9+f(d)=f(b)
Possiblevalueoff(d)=0
Totalpossiblefunctionsinthiscase=1
Totalpossiblefunctionswhenf(c)=1andf(a)=0,2and3are=6+2+1=9
CaseIII:
(1)Whenf(c)=2andf(a)=0then
3×2+2×0+f(d)=f(b)
⇒6+f(d)=f(b)
Possiblevaluesoff(d)=1,3,4
Totalpossiblefunctionsinthiscase=3
(2)Whenf(c)=2andf(a)=1then,
3×2+2×1+f(d)=f(b)
⇒8+f(d)=f(b)
Possiblevaluesoff(d)=0
Totalpossiblefunctioninthiscase=1
Totalpossiblefunctionswhenf(c)=2andf(a)=0,1are=3+1=4
CaseIV:
(1)Whenf(c)=3andf(a)=0then
3×3+2×0+f(d)=f(b)
⇒9+f(d)=f(b)
Possiblevaluesoff(d)=1
Totalone-onefunctionsfromfourcases
=17+9+4+1=31
-------------------------------------------------------------------------------------------------
Question73
LetR1andR2berelationsontheset{1,2, ......., 50}suchthat
R1= { (p,pn) : p.isaprimeandn 0isaninteger}and
R2= { (p,pn) : p.isaprimeandn =0or1}
Then,thenumberofelementsinR1R2is___
[28-Jun-2022-Shift-1]
Answer:8
Solution:
R1R2= {(2,22), (2,23), (2,24), (2,25), (3,32), (3,33), (5,52), (7,72)}
Sonumberofelements = 8
Question74
LetR1= {(a,b) N×N: | ab| 13}and
R2= {(a,b) N×N: | ab| 13}.ThenonN :
[28-Jun-2022-Shift-2]
Options:
A.BothR1andR2areequivalencerelations
B.NeitherR1norR2isanequivalencerelation
C.R1isanequivalencerelationbutR2isnot
D.R2isanequivalencerelationbutR1isnot
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question75
TheprobabilitythatarelationRfrom{x,y}to{x,y}isbothsymmetric
andtransitive,isequalto
[29-Jun-2022-Shift-2]
Options:
A. 5
16
B. 9
16
R1= {(a,b) N×N:|ab| 13}and
R2= {(a,b) N×N:|ab| 13}
InR1: | 211 | = 913
(2,11) R1and(11,19) R1but(2,19) R1
R1isnottransitive
HenceR1isnotequivalence
InR2: (13,3) R2and(3,26) R2but(13,26) R2(∵ | 13 26 | = 13)
R2isnottransitive
HenceR2isnotequivalence.
C. 11
16
D. 13
16
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question76
Thenumberofbijectivefunctions
f: {1,3,5,7, ..., 99} {2,4,6,8, .. . 100},suchthat
f(3) f(9) f(15) f(21) ... . f(99),is
[25-Jul-2022-Shift-2]
Options:
A.50P17
B.50P33
C.33! × 17!
D. 50!
2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question77
Letf (x)beaquadraticpolynomialwithleadingcoefficient1suchthat
f(0) = p,p0,andf (1) = 1
3.Iftheequationsf (x) = 0and
ffff(x) = 0haveacommonrealroot,thenf (−3)isequalto___
[25-Jul-2022-Shift-2]
Totalno.ofrelations = 22×2=16
Fav.relation = φ, {(x,x)}, {(y,y)}, {(x,x)(y,y)}
{(x,x), (y,y), (x,y)(y,x)}
Prob. =5
16
Asfunctionisone-oneandonto,outof50elementsofdomainset17elementsarefollowingrestriction
f(3) > f(9) > f(15)...... > f(99)
Sonumberofways = 50C17 1.33!
=50P33
Answer:25
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question78
Letf :RRbeacontinuousfunctionsuchthatf (3x) f(x) = x.If
f(8) = 7,thenf (14)isequalto:
[26-Jul-2022-Shift-1]
Options:
A.4
B.10
C.11
D.16
Answer:B
Solution:
Solution:
Letf(x) = (xα)(xβ)
Itisgiventhatf(0) = pαβ =p
andf(1) = 1
3 (1α)(1β) = 1
3
Now,letusassumethat,αisthecommonrootoff(x) = 0andfofofof(x) = 0
fofofof(x) = 0
fofof (0) = 0
fof(p) = 0
So,f(p)iseitherαorβ.
(pα)(pβ) = α
(αβ α)(αβ β) = α (β1)(α1)β=1(∵α0)
So,β=3
(1α)(13) = 1
3
α=7
6
f(x) = x7
6(x3)
f(−3) = 37
6(33) = 25
( )
( )
f(3x) f(x) = x...... (1)
xx
3
f(x) fx
3=x
3..... . (2)
Againxx
3
fx
3fx
9=x
32......
Similarly
( )
( ) ( )
-------------------------------------------------------------------------------------------------
Question79
Thedomainofthefunction
f(x) = sin1[2x23] + log2log 1
2
(x25x +5),where[t]isthegreatest
integerfunction,is:
[27-Jul-2022-Shift-2]
Options:
A. 5
2,5 5
2
B. 5 5
2,5+ 5
2
C. 1,5 5
2
D. 1,5+ 5
2
Answer:C
Solution:
Solution:
( )
()
( )
( )
[ )
fx
3n2fx
3n1=x
3n1... . (n)
Addingalltheseandapplyingn
lim
n
f(3x) fx
3n1=x 1 +1
3+1
32+ ...
f(3x) f(0) = 3x
2
Puttingx=8
3
f(8) f(0) = 4
f(0) = 3
Puttingx=14
3
f(14) 3=7f(14) = 0
( ) ( )
( ( ) ) ( )
12x23<2
or22x2<5
or1x2<5
2
x 5
2, 11,5
2
log 1
2
(x25x +5) > 0
0<x25x +5<1
x25x +5>0&x25x +4<0
x ,5 5
25+ 5
2,
&x (−,1) (4,)
Takingintersection
x1,5 5
2
(] [ )
( ) ( )
( )
-------------------------------------------------------------------------------------------------
Question80
Thenumberoffunctionsf ,fromthesetA = {xN:x210x +90}
tothesetB = {n2:nN}suchthatf (x) (x3)2+1,foreveryx A,
is_________.
[27-Jul-2022-Shift-2]
Answer:1440
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question81
Consideringonlytheprincipalvaluesoftheinversetrigonometric
functions,thedomainofthefunctionf (x) = cos1x24x +2
x2+3is:
[28-Jul-2022-Shift-1]
Options:
A. ,1
4
B. 1
4,
C.(−13,)
D. ,1
3
Answer:B
Solution:
( )
( ]
[ )
( ]
A= {xN,x210x +90}
= {1,2,3, ..., 9}
B= {1,4,9,16, ......}
f(x) (x3)2+1
f(1) 5,f(2) 2, ......... . f(9) 37
x=1has2choices
x=2has1choice
x=3has1choice
x=4has1choice
x=5has2choices
x=6has3choices
x=7has4choices
x=8has5choices
x=9has6choices
∴Totalfunctions = 2×1×1×1×2×3×4×5×6=1440
Solution:
-------------------------------------------------------------------------------------------------
Question82
Letα,βandγbethreepositiverealnumbers.Let
f(x) = αx5+βx3+γx,xRandg :RR.besuchthatg(f(x)) = xforall
xR.Ifa1,a2,a3, ..., anbeinarithmeticprogressionwithmeanzero,
thenthevalueoff g 1
n
n
i=1f(ai)isequalto:
[28-Jul-2022-Shift-1]
Options:
A.0
B.3
C.9
D.27
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question83
Thenumberofelementsintheset
S=x : 2 cos x2+x
6=4x+4xis:
[29-Jul-2022-Shift-2]
( ( ) )
{ ( ) }
1x24x +2
x2+31
⇒−x23x24x +2x2+3
2x24x +50 4x 1
xR&x 1
4
Sodomainis 1
4,
[ )
f g 1
n
n
i=1
f(ai)
a1+a2+a3+ ...... + an
n=0
∴Firstandlastterm,secondandsecondlastandsoonareequalinmagnitudebutoppositeinsign.
f(x) = αx5+βx3+γx
n
i=1
f(ai) = α(a1
5+a2
5+a3
5+ ... + an
5) + β(a1
3+a2
3+ ... + an
3) + γ(a1+a2+ ... + an)
= + +
=0
f g 1
n
n
i=1
f(ai) = 1
n
n
i=1
f(ai) = 0
( ( ) )
( ( ) )
Options:
A.1
B.3
C.0
D.infınite
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question84
Thedomainofthefunctionf (x) = sin1x23x +2
x2+2x +7is:
[29-Jul-2022-Shift-2]
Options:
A.[1,)
B.[−1,2]
C.[−1,)
D.(−,2]
Answer:C
Solution:
Solution:
( )
2 cos x2+x
6=4x+4x
L.H.S≤2.&R.H.S.≥2
HenceL.H.S = 2&R.H.S = 2
2 cos x2+x
6=2 4x+4x=2
Checkx=0Possiblehenceonlyonesolution.
( )
( )
f(x) = sin 1x23x +2
x2+2x +7
1x23x +2
x2+2x +71
x23x +2
x2+2x +71
x23x +2x2+2x +7
5x 5
x 1
And x23x +2
x2+2x +7 1
x23x +2 x22x 7
2x2x+90
( )
-------------------------------------------------------------------------------------------------
Question85
Thetotalnumberoffunctions,
f: {1,2,3,4} {1,2,3,4,5,6}suchthatf (1) + f(2) = f(3),isequalto
:
[25-Jul-2022-Shift-1]
Options:
A.60
B.90
C.108
D.126
Answer:B
Solution:
Solution:
xR
(i)∩(ii)
Domain∈[−1,)
Given,f(1) + f(2) = f(3)
Itmeansf(1), f(2)andf(3)aredependentoneachother.Butthereisnoconditiononf(4),sof(4)canbe
f(4) = 1,2,3,4,5,6.
Forf(1), f(2)andwehavetofindhowmanyfunctionspossiblewhichwillsatisfytheconditionf(1) + f(2) = f(3)
Case1:
Whenf(3) = 2thenpossiblevaluesoff(1)andf(2)whichsatisfyf(1) + f(2) = f(3)isf(1) = 1andf(2) = 1.
Andf(4)canbe = 1,2,3,4,5,6
∴Totalpossiblefunctions = 1×6=6
Case2:
Whenf(3) = 3thenpossiblevalues
(1)f(1) = 1andf(2) = 2
(2)f(1) = 2andf(2) = 1
Andf(4)canbe = 1,2,3,4,5,6.
∴Totalfunctions = 2×6=12
Case3:
Whenf(3) = 4then
(1)f(1) = 1andf(2) = 3
(2)f(1) = 2andf(2) = 2
(3)f(1) = 3andf(2) = 1
Andf(4)canbe = 1,2,3,4,5,6
∴Totalfunctions = 3×6=18
Case4:
Whenf(3) = 5then
(1)f(1) = 1andf(4) = 4
(2)f(1) = 2andf(4) = 3
(3)f(1) = 3andf(4) = 2
(4)f(1) = 4andf(4) = 1
Andf(4)canbe = 1,2,3,4,5and6
∴Totalfunctions = 4×6=24
Case5:
Whenf(3) = 6then
(1)f(1) = 1andf(2) = 5
(2)f(1) = 2andf(2) = 4
(3)f(1) = 3andf(2) = 3
(4)f(1) = 4andf(2) = 2
(5)f(1) = 5andf(2) = 1
Andf(4)canbe = 1,2,3,4,5and6
-------------------------------------------------------------------------------------------------
Question86
Letf :NRbeafunctionsuchthatf (x+y) = 2f (x)f(y)fornatural
numbersxandy.Iff(1)=2,thenthevalueofαforwhich
10
k=1f(α+k) = 512
3(220 1)
holds,is:
[25-Jun-2022-Shift-1]
Options:
A.2
B.3
C.4
D.6
Answer:C
Solution:
Solution:
∴Totalpossiblefunctions = 5×6=30
∴Totalfunctionsfromthose5casesweget = 6+12 +18 +24 +30 = 90
Question87
Letf :RRbeafunctiondefinedbyf (x) = 2 1 x25
2(2+x25)
1
50.If
Answer:2
Solution:
( ( ) )
thefunctiong(x) = f(f(f(x)) + f(f(x)),thenthegreatestintegerless
thanorequaltog(1)is___
[25-Jun-2022-Shift-1]
Letf (x) = x1
x+1,xR {0, 1,1}.Iff n+1(x) = f(fn(x))foralln N,
thenf 6(6) + f7(7)isequalto:
[26-Jun-2022-Shift-1]
Options:
A. 7
6
B.3
2
C. 7
12
D.11
12
Answer:B
Solution:
Question88
Question89
 Therangeofthefunction,
f(x) = log53+cos
4+x +cos π
4+x+cos π
4x cos
4x
is
[2021,01Sep.Shift-II]
( ( ) ( ) ( ) ( ) )
Options:
A.(0, 5)
B.[−2,2]
C. 1
5, 5
D.[0,2]
Answer:D
Solution:
[ ]
Question90
Thedomainofthefunctionf (x) = sin13x2+x1
(x1)2+cos1x1
x+1is
[2021,31Aug.Shift-II]
( ) ( )
Options:
A. 0,1
4
B.[−2,0] 1
4,1
2
C. 1
4,1
2 {0}
D. 0,1
2
Answer:C
Solution:
[ ]
[ ]
[ ]
[ ]
f(x) = sin13x2+x1
(x1)2+cos1x1
x+1
1x1
x+11 11x1
x+1111
22
x+1001
x+11
1x+1<
0x<
x [0,)
and−13x2+x1
(x1)21
(x1)23x2+x1 (x1)2,x1
(x22x +1) 3x2+x1
and3x2+x1x22x +1
4x2x0
and2x2+3x 20
x(4x 1) 0
and(x+2)(2x 1) 0
x (−,0] 1
4,
andx 2,1
2
x (−2,0] 1
4,1
2
DomainoffinEq.(i)∩Eq.(ii)
x {0} 1
4,1
2
( ) ( )
[ )
[ ]
[ ]
[ ]
[2021,31Aug.Shift-11]
Question91
Letf :NN beafunctionsuchthatf (m+n) = f(m) + f(n)forevery
m,n N .Iff (6) = 18,thenf (2) f(3)isequalto
Options:
A.6
B.54
C.18
D.36
Answer:B
Solution:
Question92
Thedomainofthefunctioncosec11+x
xis
[2021,26Aug.Shift-II]
Options:
A. 1, 1
2 (0,)
B. 1
2,0 [1,)
C. 1
2, {0}
D. 1
2, {0}
Answer:D
Solution:
( )
( ]
[ )
( )
[ )
f(m+n) = f(m) + f(n), m,nN
f(3+3) = f(3) + f(3)
f(6) = 2f (3) = 18 [∵f(6) = 18]
Also f (3) = f(2+1) = f(2) + f(1)
=f(1+1) + f(1)
f(3) = f(1) + f(1) + f(1)
9=3f (1) f(1) = 3
f(2) = f(1+1) = f(1) + f(1) = 3+3=6
Hence, f (2) f(3) = 69=54
f(x) = cosec11+x
x
1+x
x1
Clearly,x0
r|1+x|2 | x|2
( ) | |
1+x2+2x x2
2x +10
x 1
2
So,
x 1
2, {0}
[ ]
Question93
WhichofthefollowingisnotcorrectforrelationRonthesetofreal
numbers?
[2021,31Aug.Shift-1]
Options:
A.(x,y) R0< | x|−|y| 1isneithertransitivenorsymmetric.
B.(x,y) R0< | xy| 1issymmetricandtransitive.
C.(x,y) Rx|−|y| 1isreflexivebutnotsymmetric.
D.(x,y) Rxy| 1isreflexiveandsymmetric.
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question94
LetN bethesetofnaturalnumbersandarelationRonN bedefinedby
R= { (x,y) N×N:x33x2yxy2+3y3=0}.ThentherelationRis
[2021,27JulyShift-11]
Options:
A.symmetricbutneitherreflexivenortransitive.
B.reflexivebutneithersymmetricnortransitive.
C.reflexiveandsymmetric,butnottransitive.
D.anequivalencerelation.
Answer:B
Solution:
Accordingtothequestion,let'sconsideroption(b)(2,3)and(3,4)satisfy0< | xy|leq 1but(2,4)doesnotsatisfyit.
Solution:
-------------------------------------------------------------------------------------------------
Question95
DefinearelationRoveraclassofn ×nrealmatricesAandBas"ARB,
ifthereexistsanon-singularmatrixPsuchthatPAP1=B.Thenwhich
ofthefollowingistrue?
[2021,18MarchShift-II]
Options:
A.Rissymmetric,transitivebutnotreflexive.
B.Risreflexive,symmetricbutnottransitive.
C.Risanequivalencerelation.
D.Risreflexive,transitivebutnotsymmetric.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Given,relationRonNisdefinedby
R= {(x,y) N×N:x33x2xy2+3y3=0}
x33x2yxy2+3y3=0
x3xy23x2y+3y3=0
x(x2y2) 3y(x2y2) = 0
(x3y)(x2y2) = 0
(x3y)(xy)(x+y) = 0
Now, xx=0
x=x, (x,x) N×N
So,Risareflexiverelation.
Butnotsymmetricandtransitiverelationbecause,
(3,1)satisfiesbut(1,3)doesnot.Also,(3,1)and
(1, 1)satisfiesbut(3, 1)doesnot.
Hence,relationRisreflexivebutneithersymmetricnortransitive.
Forreflexiverelation,(A,A) RformatrixP.
A=PAP1istrueforP=1
So,Risreflexiverelation.
Forsymmetricrelation,
Let(A,B) RformatrixP.
A=PBP1Afterpre-multiplybyP1andpost-multiplybyP1
weget
P1AP =B
So,(B,A) RformatrixP1.
So,Risasymmetricrelation.
Fortransitiverelation,
LetARBandBRC
So,A=PBP1andB=PCP1
Now, A=P(PCP1)P1
A= (P)2C(P1)2A= (P)2C (P2)1
(A,C) RformatrixP2.
Ristransitiverelation.
Hence,Risanequivalencerelation.
Question96
LetA = {2,3,4,5, ...., 30}and'′′beanequivalencerelationonA ×A,
definedby(a,b) (c,d),ifandonlyifad =bc.Then,thenumberof
orderedpairs,whichsatisfythisequivalencerelationwithorderedpair
(4,3)isequalto
[2021,16MarchShift-II]
Options:
A.5
B.6
C.8
D.7
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question97
LetR = { (P,O)∣, PandQareatthesamedistancefromtheorigin\}be
arelation,thentheequivalenceclassof(1, 1)istheset
[2021,26Feb.Shift-1]
Options:
A.S = {(x,y) x2+y2=4}
B.S = {(x,y) x2+y2=1}
C.S = {(x,y) x2+y2= 2}
D.S = {(x,y) x2+y2=2}
Answer:D
Solution:
A= {2,3,4,5, ..., 30}
a=bc
(a,b)R(4,3)
3a =4b
a=4
3b
bmustbeamultipleof3,bcanbe
(3,6,9, .. . 30).
Also,amustbelessthanorequalto30.
(a,b) = (4,3), (8,6), (12,9), (16,12), (20,15)
(24,18), (28,21)
7orderedpairs
( )
Solution:
-------------------------------------------------------------------------------------------------
Question98
Let{S=1,2,3,4,5,6,7}.Thenthenumberofpossiblefunctions
f:SSsuchthatf (mn) = f(m) f(n)foreverym,nSandm nS
isequalto............
[2021,27JulyShift-I]
Answer:490
Solution:
Solution:
-------------------------------------------------------------------------------------------------
LetP(a,b)andQ(c,d)areanytwopoints.
Given,OP =00
i.e. a2+b2=c2+d2
Squaringonbothsides,
R= {((a,b), (c,d)) : a2+b2=c2+d2}
R(x,y), S(1, 1), OR =OS(equivalenceclass)
ThisgivesOR =x2+y2andOS = 2
lx2+y2= 2
x2+y2=2(Squaringonbothsides)
S= {(x,y) : x2+y2=2}
S= {1,2,3,4,5,6,7}
f:SS
f(mn) = f(m)f(n)
m,nSm,nS
If mn Smn 7
So, (11,12, ..., 17) 7
(22,23) 7
Whenm=1,f(n) = f(1) f(n) f(1) = 1
Whenm=n=2,
f(4) = f(2)f(2) = f(2) = 1f(4) = 1 or
f(2) = 2f(4) = 4.
When,m=2,n=3
f(6) = f(2)f(3)
When, f (2) = 1
f(3) = 1 to 7
When, f (2) = 2
f(3) = 1 or 2 or 3.
Andf(5), f(7)cantakeanyvalue(1-7)[ f(5) = f(1) f(5) 7andf(7) = f(1) f(7) 7}Thepossiblecombinationis
llf(1) = 1 f (1) = 1
f(2) = 1 f (2) = 2
f(3) = (17)f(3) = (13)
f(4) = 1 f (4) = 4
f(5) = (17)f(5) = (17)
f(6) = f(3)f(6) = f(3)
f(7) = (17)f(7) = (17)
So,total = (1×1×7×1×7×1×7)
+(1×1×3×1×7×1×7)
=490
{
{
Question99
If[x]bethegreatestintegerlessthanorequaltox,then 100
n=8
(−1)nn
2is
equalto
[25July2021,Shift-III]
Options:
A.0
B.4
C.-2
D.2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question100
Ifthedomainofthefunctionf (x) = cos1x2x+1
sin12x 1
2
istheinterval(α,β),
thenα +βisequalto
[2021,22JulyShift-II]
Options:
A. 3
2
B.2
C. 1
2
D.1
Answer:A
Solution:
[ ]
( )
Wehave,
100
n=8
(−1)nn
2( [x]isthegreatestintegerfunction)
Substitutethevaluesofn
= [4] + [−4.5] + [5] + [−5.5]
+ ... + [−49.5] + [50]
=45+56+ ... 50 +50
=4
[ ]
Solution:
-------------------------------------------------------------------------------------------------
Question101
Let[x]denotethegreatestintegerx,wherex R.Ifthedomainofthe
realvaluedfunction
f(x) = |[x]| 2
|[x]| 3is(−,a) [b,c)
[u,), a<b<c,thenthevalueof
a+b+cis
[2021,20JulyShift-I]
Options:
A.8
B.1
C.2
D.3
Answer:C
Solution:
Solution:
f(x) = cos1x2x+1
sin12x 1
2
xR,x(x1) 0
x2x+10andx2x+11
0x1⋅⋅⋅⋅⋅⋅ (i)⇒ 0<sin12x 1
2<π
2
0<2x 1
2<1
1
2<x<3
2⋅⋅⋅⋅⋅⋅ (ii)
(A) (B) = x1
2,1
α+β=3
2
( )
( )
( ]
f(x) = |[x]| 2
|[x]| 3
|[x]| 2
|[x]| 30
Let|[x]| = t
-------------------------------------------------------------------------------------------------
Question102
Therealvaluedfunctionf (x) = cosec1x
x [x],where[x]denotesthegreatest
integerlessthanorequaltox,isdefinedforallxbelongingto
[2021,18MarchShift-I]
Options:
A.allrealsexceptintegers
B.allnon-integersexcepttheinterval[1,1]
C.allintegersexcept0,1,1
D.allrealsexcepttheinterval[−1,1]
Answer:B
Solution:
Solution:
l| [x] | = 3x [−3, 2) [3,4)
Domainof x = [−, 3) [−2,3) [4,)
a= 3
b= 2
c=3
a+b+c= 3+ (−2) + 3= 2
Given,f(x) = cosec1x
x [x]
f(x) = cosec1x
√{x}
Forf(x)tobedefined,
|x| 1
{x} > 0. ⇒ x 1 or x 1
x1 integers .
i.e.x (−, 1] [1,) {integers}
{ {
-------------------------------------------------------------------------------------------------
Question103
Ifthefunctionsaredefinedasf (x) = xandg(x) = 1x,thenwhatis
thecommondomainofthefollowingfunctions?
f+g,fg,fg,gf,gf ,where
(f±g)(x) = f(x) ± g(x), (fg)(x) = f(x)
g(x)
[2021,18March,Shift-1]
Options:
A.0 x1
B.0 x<1
C.0 <x<1
D.0 <x1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question104
Afunctionf (x)isgivenbyf (x) = 5x
5x+5,thenthesumoftheseries
f1
20 +f2
20 +f3
20 + ... + f39
20
isequalto
[2021,25Feb.Shift-II]
Options:
A. 29
2
( ) ( ) ( ) ( )
i.e.allnon-integersexcepttheinterval[−1,1]
(here,−1and1areincludedinexceptcase,becauseof−1and1areintegers).
Given,f(x) = xandg(x) = 1x
∴Domainoff(x) = D1isx0
i.e.D1:x (0,)
anddomainofg(x) = D2is1x0⇒x1
i.e.D2:x (−∞1]
As,weknowthat,thedomainoff+g1fg,gfwillbeD1D2aswellasthedomainfor f
gisD1D2exceptall
thosevalue(s)ofx,suchthatg(x) = 0.
Similarly,for g
fisD1D2butf(x) 0.
Hence,commondomainfor(f+g), (fg), f
g,g
fand(gf)willbe0<x<1
( ) ( )
B. 49
2
C. 39
2
D. 19
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question105
Ifa +α=1,b+β=2andaf (x) + αf 1
x=bx +β
x,x0,thenthevalue
ofexpression f(x) + f1
x
x+1
x
is
[2021,24Feb.Shift-II]
Answer:2
Solution:
Solution:
( )
( )
Given,f(x) = 5x
5x+5,then,
f(2x) = 52x
52x+5
=5
5x+5
Thisgives,f(x) + f(2x) = 5x+5
5x+5=1⇒f1
20 +f 2 1
20 =f1
20 +f39
20 =1
Similarly,
cf 2
20 +f38
20 =1 andsoon,
f1
20 +f2
20 + ... + f38
20 +f39
20
=1+1+ ... + 1+f20
20
=19 +f(1) = 19 +1
2=39
2
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )
( )
Given,a+α=1
b+β=2
af(x) + αf1
x=bx +β
x⋅⋅⋅⋅⋅⋅ (i)
Replacexby 1
x,
af 1
x+af (x) = b
x+βx
( )
( )
-------------------------------------------------------------------------------------------------
Question106
Letf (x) = sin1xand
g(x) = x2x2
2x2x6
Ifg(2) = lim
x2
g(x),thenthedomainofthefunctionfogis
[2021,26Feb.Shift-II]
Options:
A.(−, 2] 3
2,
B.(−, 2] [−1,)
C.(−, 2] 4
3,
D.(−, 1] [2,)
Answer:C
Solution:
Solution:
[ )
[ )
AddingEqs.(i)and(ii),weget
&(a+α)f(x) + f1
x=x+1
x(b+β) ⋅⋅⋅⋅⋅⋅ (ii)
f(x) + f1
x
x+1
x
=b+β
a+α=2
1=2
[ ( ) ] ( )
( )
Given,g(x) = x2x2
2x2x6,f(x) = sin1x
f(g(x)) = sin1(g(x))
fg(x) = sin1x2x2
2x2x6
Forthedomainoff og(x),
|g(x)| 1
[ ∵Domainoff(x)is[−1,1]
x2x2
2x2x61
(x+1)(x2)
(2x +3)(x2)1
x+1
2x +31
1x+1
2x +31
x+1
2x +3
21
(x+1)2 (2x +3)2
3x2+10x +80
( )
| |
| |
| |
( )
-------------------------------------------------------------------------------------------------
Question107
Letg :NN bedefinedas
g(3n +1) = 3n +2
g(3n +2) = 3n +3,
g(3n +3) = 3n +1,foralln 0.
Thenwhichofthefollowingstatementsistrue?
[2021,25JulyShift-1]
Options:
A.Thereexistsanontofunctionf :NN suchthatfog =f
B.Thereexistsaone-onefunctionf :NN suchthatf og =f
C.gogog =g
D.Thereexistsafunctionf :NN suchthatgof =f
Answer:A
Solution:
(3x +y)(x+2) 0
Thisimplies,
x (−, 2] 4
3,
[ )
g(3n +1) = 3n +2
g(3n +2) = 3n +3
g(3n +3) = 3n +1,foralln0
g:NN
g(1) = 2,g(4) = 5,g(7) = 8
g(2) = 3,g(5) = 6,g(8) = 9
g(3) = 1,g(6) = 4,g(9) = 7
f[g(1)] = f(1)
f(2) = f(1)
Clearly,itisnotaone-onefunction.
Now,f[g(2)] = f(2)
f(3) = f(2)
And,f[g(3)] = f(3)
f(1) = f(3)
Similarly,f[g(4)] = f(4)
f(5) = f(4)
And,soon
l f (1) = f(2) = f(3)
f(4) = f(5) = f(6)
Now,therecanbeapossibilitysuchthat
So,f(x)canbeontofunction.
Whenf(1) = f(2) = f(3) = 1
f(4) = f(5) = f(6) = 2
andsoon.
Question108
Considerfunctionf :ABandg :BC(A,B,CeqR)suchthat
(gof )1exists,then
[2021,25JulyShift-II]
Options:
A.fandgbothareone-one
B.f andgbothareonto
C.f isone-oneandgisonto
D.f isontoandgisone-one
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question109
LetA = {0,1,2,3,4,5,6,7}.Then,thenumberofbijectivefunctions
F:AAsuchthatf (1) + f(2) = 3f(3)isequalto..........
[2021,22JulyShift-III]
Answer:720
Solution:
Solution:
Givenfunctions,f:ABandg:BC(A,B,CeqR)
∴(gof)1exists⇒gofisabijectivefunction.
⇒'f'mustbe'one-one'and'g'mustbe'onto'function.
f(1) + f(2) = 3f(3)
A= {0,1,2,3,4,5,6,7}
f:AA
So,f(1) + f(2) + f(3) = 3
0+1+2=3istheonlypossibility.
So,f(0)canbeeither0or1or2.
Similarly,f(1)andf(2)canbe0,1and2.
and{3,4,5,6,7} {3,4,5,6,7}
Theyhave5!choices.
And{0,1,2}
Theyhave3!choices.
Numberofbijectivefunctions
=3! × 5! = 720
-------------------------------------------------------------------------------------------------
Question110
Letf :Rα
6Rbedefinedby
f(x) = 5x +3
6x α
Then,thevalueofαforwhich(fof)(x) = x,forallx Rα
6is
[2021,20JulyShift-II]
Options:
A.Nosuchαexists
B.5
C.8
D.6
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question111
Letf :R {3} R {1}bedefinedbyf (x) = x2
x3.Letg :RRbegiven
asg(x) = 2x 3.Then,thesumofallthevaluesofxforwhich
f1(x) + g1(x) = 13
2isequalto
[2021,18MarchShift-II]
{ }
{ }
f(x) = 5x +3
6x α
Now,ff(x) = f5x +3
6x α
=
55x +3
6x α+3
65x +3
6x αα
=5(5x +3) + 3(6x α)
6(5x +3) α(6x 2)
=5(5x +3) + 3(6x α)
6(5x +3) α(6x 2)
Given,fof(x) = x
5(5x +3) + 3(6x α)
6(5x +3) α(6x α)=x
25x +15 +18x
=30x2+18x 6αx2+α2x
x2(30 ) x(α225) + 15 =0
Comparingcoefficients,
30 6x =0
=30
α=5
( )
( )
( )
Options:
A.7
B.2
C.5
D.3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question112
Theinverseofy =5log xis
[2021,17MarchShift-I]
Options:
A.x =5log y
B.x =ylog 5
C.x =y
1
log 5
D.x =5
1
log y
Answer:C
Given,f(x) = x2
x3
g(x) = 2x 3
Lety=f(x) = x2
x3
xy 3y =x2⇒ xy x=3y 2
x(y1) = 3y 2
x=3y 2
y1
f1(y) = 3y 2
y1
f1(x) = 3x 2
x1
Similarly, g1(x) = x+3
2
Given,f1(x) + g1(x) = 13
2
3x 2
x1+x+3
2=13
2
x2+8x 7=13(x1)
x25x +6=0
(x2)(x3) = 0
x=2,3
∴Sum = 2+3=5
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question113
LetA = {1,2,3, ..., 10}andf :AAbedefinedasdefinedas
f(x) = x+1 if x isodd
xif x iseven .
Then,thenumberofpossiblefunctionsg :AA,suchthatgof =f is
[2021,26Feb.Shift-II]
Options:
A.105
B.10C5
C.55
D.5!
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question114
Letf ,g:NN ,suchthatf (n+1) = f(n) + f(1) nN andgbeany
{
y=5log x
Takinglogonbothsides,
log y =log x log 5
1
log 5 =log x
log y
1
log 5 =logyx
x=y
1
log 5
f(x) = x+1 xisodd
xxiseven. .
Given,g:AAsuchthat,
g(f(x)) = f(x)
Whenxiseven,then
g(x) = x
Whenxisodd,then
g(x+1) = x+1
Thisimplies,
g(x) = x1x iseven.
⇒Ifxisodd,theng(x)cantakeanyvalueinsetA.
So,numberofg(x) = 105
{
arbitraryfunction.Whichofthefollowingstatementsisnottrue?
[2021,25Feb.Shift-1]
Options:
A.iff ogisone-one,thengisone-one.
B.iff isonto,thenf (n) = n, nN .
C.f isone-one.
D.ifgisonto,thenfogisone-one.
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question115
Letxdenotethetotalnumberofone-onefunctionsfromasetAwith3
elementstoasetBwith5elementsandydenotethetotal
numberofone-onefunctionsfromthesetAtothesetA ×B.Then,
[2021,25Feb.Shift-II]
Options:
A.2y =91x
B.2y =273x
C.y =91x
D.y =273x
Answer:A
Solution:
Given,f(n+1) = f(n) + f(1), nN
f(n+1) f(n) = f(1)
ItisanAPwithcommondifference = f(1)
Also,generalterm
l l =Tn=f(1) + (n−)f(1) = nf (1)
f(n) = nf (1)
Clearly,f(n)isone-one.
Forfogtobeone-one,gmustbeone-one.
Forftobeonto,f(n)shouldtakeallthevaluesofnaturalnumbers.
As,f(x)isincreasing,f(1) = 1
f(n) = n
Ifgismany-one,thenf ogismanyone.
So,ifgisonto,thenfogisone-one.
x= { f:AB,fisone-one}
y= { g:AA×B,gisoneone}
-------------------------------------------------------------------------------------------------
Question116
Letf :RRbedefinedasf (x) = 2x 1andg :R {1} Rbedefined
asg(x) =
x1
2
x1.Thenthecompositionfunctionf (g(x))is:
24Feb2021Shift1
Options:
A.ontobutnotone-one
B.bothone-oneandonto
C.one-onebutnotonto
D.neitherone-onenoronto
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question117
LetR1andR2betworelationsdefinedasfollows:
R1= {(a,b) R2:a2+b2Q}andR2= {(a,b) R2:a2+b2Q},
whereQisthesetofallrationalnumbers.Then:
[Sep.03,2020(II)]
Options:
A.NeitherR1norR2istransitive.
NumberofelementsinA=3i.e.|A| = 3
Similarly,|B| = 5
Then,|A×B|= |A|×|B| = 3×5=15
Now,numberofone-onefunctionfromAtoBwillbe
l5P3=5!
(53)! =5!
2!=5×4×3=60
x=60
Now,numberofone-onefunctionfromA
l to A ×B willbe =15P3=15!
(15 3)! =15!
12!
=15 ×14 ×13 =2730
y=2730l c y=2730
Thus, 2 × (2730) = 91 × (60)
2y =91x
f(g(x)) = 2g(x) 1=22x 1
2(x1)1 = x
x1=1+1
x1
Rangeoff(g(x)) = mathbb R {1}
Rangeoff(g(x))isnotonto
&f(g(x))isone-one
So,f(g(x))isone-onebutnotonto.
( )
B.R2istransitivebutR1isnottransitive.
C.R1istransitivebutR2isnottransitive.
D.R1andR2arebothtransitive.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question118
Thedomainofthefunctionf (x) = sin1|x| + 5
x2+1is(−, a] [a,].
Thenaisequalto:
[Sep.02,2020(I)]
Options:
A. 17
2
B. 17 1
2
C. 1+ 17
2
D. 17
2+1
Answer:C
Solution:
Solution:
( )
(a)ForR1leta=1+ 2,b=1 2,c=814
aR1ba2+b2= (1+ 2)2+ (1 2)2=6Q
bR1cb2+c2= (1 2)2+ (814)2=3Q
aR1ca2+c2= (1+ 2)2+ (814)2=3+42Q
R1isnottransitive.
ForR2leta=1+ 2,b= 2,c=1 2
aR2ba2+b2= (1+ 2)2+ (√2)2=5+22Q
bR2cb2+c2= (√2)2+ (1 2)2=522Q
aR2ca2+c2= (1+ 2)2+ (1 2)2=6Q
R2isnottransitive.
f(x) = sin1|x| + 5
x2+1
1|x| + 5
x2+11
| x| +5x2+1
[∵x2+10]
x2 | x| 40
( )
-------------------------------------------------------------------------------------------------
Question119
IfR = {(x,y) : x,yZ,x2+3y28}isarelationonthesetofintegers
Z ,thenthedomainofR1is:
[Sep.02,2020(I)]
Options:
A.{−2, 1,1,2}
B.{0,1}
C.{−2, 1,0,1,2}
D.{−1,0,1}
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question120
Let[t]denotethegreatestintegert.Thentheequationin
x, [x]2+2[x+2] 7=0has:
[Sep.04,2020(I)]
Options:
A.exactlytwosolutions
B.exactlyfourintegralsolutions
C.nointegralsolution
D.infinitelymanysolutions
Answer:D
Solution:
Solution:
|x| 1 17
2|x| 1+ 17
20
x , 1+ 17
21+ 17
2,
a=1+ 17
2
( ) ( )
( ) [ )
Since,R= {(x,y) : x,yZ,x2+3y28}
R= {(1,1), (2,1), (1, 1), (0,1), (1,0)}
DR1= {−1,0,1}
-------------------------------------------------------------------------------------------------
Question121
Letf (x)beaquadraticpolynomialsuchthatf (−1) + f(2) = 0.Ifoneof
therootsoff (x) = 0is3,thenitsotherrootliesin:
[Sep.02,2020(II)]
Options:
A.(-1,0)
B.(1,3)
C.(-3,-1)
D.(0,1)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question122
Letf (1,3) Rbeafunctiondefinedbyf (x) = x[x]
1+x2where[x]denotes
thegreatestintegerx.Thentherangeoff is:
[Jan.8,2020(II)]
Options:
A. 2
5,3
53
4,4
5
B. 2
5,1
23
5,4
5
C. 2
5,4
5
( ) ( )
( ) ( )
( )
Thegivenequation[x]2+2[x] + 47=0
[x]2+2[x] 3=0
[x]2+3[x] [x] 3=0
([x] + 3)([x] 1) = 0 [x] = 1or-3⇒x [−3, 2) [1,2)
∴Theequationhasinfinitelymanysolutions.
Letf(x) = ax2+bx +c
Given:f(−1) + f(2) = 0
ab+c+4a +2b +c=0
5a +b+2c =0......(i)
andf(3) = 09a +3b +c=0......(ii)
Fromequations(i)and(ii),
a
16=b
18 5=c
15 9a
5=b
13 =c
6
Productofroots,αβ =c
a=6
5andα=3
β=2
5 (−1,0)
D. 3
5,4
5
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question123
LetA = {a,b,c}andB = {1,2,3,4}.Thenthenumberofelementsin
thesetC = { f:AB|2f(A)andf isnotone-one}is_______.
[NASep.05,2020(II)]
Answer:19
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question124
Theinversefunctionoff (x) = 82x 82x
82x +82x,x (−1,1),is_______.
[Jan.8,2020(I)]
( )
f (x)
x
x2+1
x (1,2)
2x
x2+1
x [2,3).
f(x)
1x2
1+x2
x (1,2)
12x2
1+x2
x [2,3).
f(x)isadecreasingfunction
y2
5,1
26
10,4
5
y2
5,1
23
5,4
5
{
{
( ) ( ]
( ) ( ]
Thedesiredfunctionswillcontaineitheroneelementortwoelementsinitscodomainofwhich'2'alwaysbelongsto f (A).
∴ThesetBcanbe{2}, {1,2}, {2,3}, {2,4}
Totalnumberoffunctions = 1+ (232)3=19
Options:
A.1
4loge
1+x
1x
B.1
4(log8e)loge
1x
1+x
C.1
4loge
1x
1+x
D.1
4(log8e)loge
1+x
1x
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question125
Ifg(x) = x2+x1and(gof )(x) = 4x210x +5,thenf 5
4isequalto:
[Jan.7,2020(I)]
Options:
A.3
2
B.1
2
C.1
2
D.3
2
Answer:B
Solution:
Solution:
( )
( )
( )
( )
( )
y=82x 82x
82x +82x
1+y
1y=82x
82x 84x =1+y
1y
4x =log8
1+y
1y
x=1
4log8
1+y
1y
f1(x) = 1
4log8
1+x
1x
( )
( )
( )
(gof )(x) = g(f(x)) = f2(x) + f(x) 1
g f 5
4=45
4
210 .5
4+5 = 5
4
[∵g(f(x)) = 4x210x +5]
( ( ) ) ( )
-------------------------------------------------------------------------------------------------
Question126
Forasuitablychosenrealconstanta,letafunction,f :R {−a} Rbe
definedbyf (x) = ax
a+x.Furthersupposethatforanyrealnumberx a
andf (x) a,(fof)(x) = x.Thenf 1
2isequalto:
[Sep.06,2020(II)]
Options:
A.1
3
B.1
3
C.-3
D.3
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question127
Letf :RRbedefinedbyf (x) = x
1+x2,xR.Thentherangeoff is:
[Jan.11,2019(I)]
Options:
A. 1
2,1
2
( )
[ ]
g f 5
4=f25
4+f5
41
5
4=f25
4+f5
41
f25
4+f5
4+1
4=0
f5
4+1
2
2=0
t5
4= 1
2
( ( ) ) ( ) ( )
( ) ( )
( ) ( )
( ( ) )
( )
f(f(x)) =
aax
a+x
a+ax
a+x
=x
aax
1+x=f(x)a(1x)
1+x=ax
a+xa=1
f(x) = 1x
1+xf1
2=3
( )
( )
( )
B.R [−1,1]
C.R 1
2,1
2
D.(−1,1) {0}
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question128
Thedomainofthedefinitionofthefunctionf (x) = 1
4x2+log10(x3x)is:
[April.09,2019(II)]
Options:
A.(-1,0)(1,2) (3,)
B.(-2,-1)(−1,0) (2,)
C.(-1,0)(1,2) (2,)
D.(1,2)(2,)
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
[ ]
f(x) = x
1+x2,xR
Let,y=x
1+x2
yx2x+y=0x=1±14y2
2
14y20
14y2
| y1
2
1
2y1
2
⇒Therangeoffis 1
2,1
2
|
[ ]
Todeterminedomain,denominator≠0andx3x>0
i.e.,4x20x ±2......(1)
andx(x1)(x+1) > 0
x (−1,0) (1,)........(2)
Hencedomainisintersectionof(1)&(2).
i.e.,x (−1,0) (1,2) (2,)
Question129
Iff(x) = loge
1x
1+x,x<1,thenf 2x
1+x2isequalto
[April8,2019(I)]
Options:
A.2f (x)
B.2f (x2)
C.(f(x))2
D.2f (x)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question130
Letf (x) = ax(a>0)bewrittenasf (x) = f1(x) + f2(x),wheref 1(x)isan
evenfunctionandf 2(x)isanoddfunction.Thenf 1(x+y) + f1(xy)
equals:
[April.08,2019(II)]
Options:
A.2f 1(x)f1(y)
B.2f 1(x+y)f1(xy)
C.2f 1(x)f2(y)
D.2f 1(x+y)f2(xy)
Answer:A
Solution:
( ) | | ( )
f(x) = log 1x
1+x,x<∣
f2x
1+x2=log
12x
1+x2
1+2x
1+2x2
=log 1+x22x
1+x2+2x =log 1x
1+x
2
=2 log 1x
1+x=2f (x)
( ) | |
( ) ( )
( ) ( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question131
Letafunctionf : (0,) (0,)bedefinedbyf (x) = 11
x.Thenf is:
[Jan.11,2019(II)]
Options:
A.notinjectivebutitissurjective
B.injectiveonly
C.neitherinjectivenorsurjective
D.(Bonus)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question132
Thenumberoffunctionsffrom{1,2,3,...,20}onto{1,2,3,....,20}
suchthatf(k)isamultipleof3,wheneverkisamultipleof4is:
[Jan.11,2019(II)]
Options:
A.65× (15)!
B.5! × 6!
C.(15)! × 6!
| |
Givenfunctioncanbewrittenas
f(x) = ax=ax+ax
2+axax
2
wheref1(x) = ax+ax
2isevenfunction
f2(x) = axax
2isoddfunction
f1(x+y) + f1(xy)
=ax+y+axy
2+axy+ax+y
2
=1
2[ax(ay+ay) + ax(ay+ay)]
=(ax+ax)(ay+ay)
2=2f 1(x) f1(y)
( ) ( )
( ) ( )
f: (0,) (0,)
f(x) = 11
xisnotafunction
f(1) = 0and1∈domainbut0∉co-domain
Hence,f(x)isnotafunction.
| |
D.56×15
Answer:C
Solution:
Solution:
Question133
LetNbethesetofnaturalnumbersandtwofunctionsfandgbedefined
asf,g:N→Nsuchthatf (n) =
n+1
2if n is odd
n
2if n is even
andg(n) = n (−1)n.Thenf ogis:
[Jan.10,2019(II)]
Options:
A.ontobutnotone-one.
B.one-onebutnotonto.
C.bothone-oneandonto.
D.neitherone-onenoronto.
Answer:A
Solution:
Solution:
{
Domainandcodomain = {1,2,3, ....., 20}.
Therearefivemultipleof4as4,8,12,16and20.
andthereare6multipleof3as3,6,9,12,15,18.
Since,wheneverkismultipleof4thenf(k)ismultipleof3thentotalnumberofarrangement = 6c5×5! = 6!
Remaining15elementscanbearrangedin15!ways.
Since,foreveryinput,thereisanoutput
⇒functionf(k)inonto
∴Totalnumberofarrangement = 15!.6!
f(n) =
n+1
2,if n is odd
n
2,if n is even
g(n) =
2,n=1
1,n=2
4,n=3
3,n=4
6,n=5
5,n=6
Then,
{
{
-------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------
Question134
LetA = { xR:xisnotapositiveinteger}.Defineafunctionf :AR
asf (x) = 2x
x1,thenf is:
[Jan.09,2019(II)]
Options:
A.notinjective
B.neitherinjectivenorsurjective
C.surjectivebutnotinjective
D.injectivebutnotsurjective
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question135
Forx 0,3
2,l etf (x) = x,g(x) = tan xandh(x) = 1x2
1+x2
Ifϕ(x) = ((hof )og)(x),thenϕ π
3isequalto
[April12,2019(I)]
( )
( )
f(g(n)) =
g(n) + 1
2,if g(n)is odd
g(n)
2,if g(n)is even
f(g(n)) =
1,n=1
1,n=2
2,n=3
2,n=4
3,n=5
3,n=6
: :
: :
: :
⇒fogisontobutnotone-one
{
{
AsA= { x R:xisnotapositiveinteger}
Afunctionf:ARgivenbyf(x) = 2x
x1
f(x1) = f(x2) x1=x2
So,fisone-one.
Asf(x) 2foranyxAfisnotonto.
Hencefisinjectivebutnotsurjective.
Options:
A.tan π
12
B.tan 11π
12
C.tan
12
D.tan
12
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question136
Letf (x) = x2,xR.ForanyA R,defineg(A) = {xR:f(x) A}.If
S= [0,4],thenwhichoneofthefollowingstatementsisnottrue?
[April10,2019(I)]
Options:
A.g(f(S)) S
B.f (g(S)) = S
C.g(f(S)) = g(S)
D.f (g(S)) f(S)
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
ϕ(x) = ( (hof)og)(x)
ϕπ
3=h f g π
3=h(f(√3)) = h(314)
=1 3
1+ 3= 1
2(1+323) = 32= (−3+2)
= tan 15° = tan(180° 15°) = tan π π
12 =tan 11π
12
( ) ( ( ( ) ) )
( )
f(x) = x2;xR
g(A) = {xR:f(x) A}S= [0,4]
g(S) = {xR:f(x) S}
= {xR:0x24} = {xR: 2x2}
g(S) Sf(g(S)) f(S)
g(f(S)) = {xR:f(x) f(S)}
= {xR:x2S2} = {xR:0x216}
= {xR: 4x4}
g(f(S)) g(S)
g(f(S)) = g(S)isincorrect.
Question137
Forx R {0,1}, let f 1(x)=1
x,f2(x) = 1xandf 3(x) = 1
1xbethree
givenfunctions.Ifafunction,J (x)satisfies(f2o Jof1)(x) = f3(x)thenJ (x)
isequalto:
[Jan.09,2019(I)]
Options:
A.f 3(x)
B.1
xf3(x)
C.f 2(x)
D.f 1(x)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question138
LetN denotethesetofallnaturalnumbers.Definetwobinaryrelations
onN asR1= {(x,y) N×N:2x +y=10}and
R2= {(x,y) N×N:x+2y =10}.Then
[OnlineApril16,2018]
Options:
A.Both R1andR2aretransitiverelations
B.BothR1andR2aresymmetricrelations
C.RangeofR2is{1,2,3,4}
Thegivenrelationis
(f2oJ of 1)(x) = f3(x) = 1
1x
(f2J)(f1(x)) = 1
1x
(f2oJ )1
x=1
11
1
x
=
1
x
1
x1
f1(x) = 1
x
(f2oJ )(x) = x
x1
1
xis replaced by x
f2(J(x)) = x
x1
1J(x) = x
x1[∵f2(x) = 1x]
J(x) = 1x
x1=1
1x = f3(x)
( ) [ ]
[ ]
D.RangeofR1is{2,4,8}
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question139
Considerthefollowingtwobinaryrelationsontheset
A= {a,b,c} : R1= { (c,a)(b,b), (a,c),(c,c), (b,c), (a,a) }and
R2= { (a,b), (b,a), (c,c),(c,a), (a,a), (b,b), (a,c).Then
[OnlineApril15,2018]
Options:
A.R2issymmetricbutitisnottransitive
B.BothR1andR2aretransitive
C.BothR1andR2arenotsymmetric
D.R1isnotsymmetricbutitistransitive
Answer:A
Solution:
Solution:
Here,R1= {(x,y) N×N:2x +y=10}and
R2= {(x,y) N×N:x+2y =10}
ForR1;2x +y=10andx,yN
So,possiblevaluesforxandyare:
x=1,y=8i.e.(1,8);
x=2,y=6i.e.(2,6);
x=3,y=4i.e.(3,4)andx=4,y=2i.e.(4,2).
R1= {(1,8), (2,6), (3,4), (4,2)}
Therefore,RangeofR1is{2,4,6,8}
R1isnotsymmetric
Also,R1isnottransitivebecause(3,4), (4,2) R1but(3,2)∉R1
Thus,optionsA,BandDareincorrect.
ForR2;x+2y =10andx,yN
So,possiblevaluesforxandyare:x=8,y=1i.e.(8,1);
x=6,y=2i.e.(6,2);
x=4,y=3i.e.(4,3)and
x=2,y=4i.e.(2,4)
R2= {(8,1), (6,2), (4,3), (2,4)}
Therefore,RangeofR2is{1,2,3,4}
R2isnotsymmetricandtransitive.
BothR1andR2aresymmetricas
Forany(x,y) R1,wehave
(y,x) R1andsimilarlyforR2
Now,forR2, (b,a) R2, (a,c) R2but(b,c) R2
Similarly,forR1, (b,c) R1, (c,a) R1but(b,a) R1
-------------------------------------------------------------------------------------------------
Question140
Letf :ABbeafunctiondefinedasf (x) = x1
x2,whereA =R {2}and
B=R {1}.Thenf is
[OnlineApril15,2018]
Options:
A.invertibleandf 1(y) = 2y +1
y1
B.invertibleandf 1(y) = 3y 1
y1
C.noinvertible
D.invertibleandf 1(y) = 2y 1
y1
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question141
Thefunctionf :R 1
2,1
2definedasf (x) = x
1+x2,is:
[2017]
Options:
A.neitherinjectivenorsurjective
B.invertible
C.injectivebutnotsurjective
D.surjectivebutnotinjective
Answer:D
Solution:
[ ]
Therefore,neitherR1norR2istransitive.
Supposey=f(x)
y=x1
x2
yx 2y =x1
(y1)x=2y 1
x=f1(y) = 2y 1
y1
Asthefunctionisinvertibleonthegivendomainanditsinversecanbeobtainedasabove.
Solution:
-------------------------------------------------------------------------------------------------
Question142
Thefunctionf :NN definedbyf (x) = x5x
5,whereN issetof
naturalnumbersand[x]denotesthegreatestintegerlessthanorequal
tox,is:
[OnlineApril9,2017]
Options:
A.one-oneandonto.
B.one-onebutnotonto.
C.ontobutnotone-one.
D.neitherone-onenoronto.
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question143
Letf (x) = 210 .x+1andg(x) = 310 .x1.If(f og)(x) = x,thenxisequal
to:
[OnlineApril8,2017]
[ ]
Wehavef:R 1
2,1
2,
f(x) = x
1+x2xR
f′(x) = (1+x2) . 1x.2x
(1+x2)2 = (x+1)(x1)
(1+x2)2
signoff′(x)
f′(x)changessignindifferentintervals.
∴NotinjectiveNowy=x
1+x2
y+yx2=x
yx2x+y=0
Fory0,D=14y20
y1
2,1
2 {0}
Fory=0x=0
∴Rangeis 1
2,1
2
⇒Surjectivebutnotinjective
[ ]
[ ]
[ ]
f(1) = 15[15] = 1
f(6) = 65[65] = 1→Manyone
f(10) = 10–5(2) = 0whichisnotinco–domain.
Neitherone–onenoronto.
}
Options:
A. 310 1
310 210
B. 210 1
210 310
C. 1310
210 310
D. 1210
310 210
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question144
Forx R,x0,letf 0(x) = 1
1xandf n+1(x) = f0(fn(x))n=0,1,2, .....
Thenthevalueoff 100(3) + f1
2
3+f2
3
2isequalto:
[OnlineApril9,2016]
Options:
A.8
3
B.4
3
C.5
3
D.1
3
Answer:C
Solution:
Solution:
( ) ( )
f(g(x)) = x
f(310x1) = 210(310 .x1) + 1=x
210(310x1) + 1=x
x(610 1) = 210 1
x=210 1
610 1=1210
310 210
f1(x) = f0+1(x) = f0(f0(x)) = 1
11
1x
=x1
x
f2(x) = f1+1(x) = f0(f1(x)) = 1
1x1
x
=x
-------------------------------------------------------------------------------------------------
Question145
LetA = {x1,x2, ....., x7}andB = {y1,y2,y3}betwosetscontaining
sevenandthreedistinctelementsrespectively.Thenthetotalnumberof
functionsf :ABthatareonto,ifthereexistexactlythreeelementsx
inAsuchthatf (x) = y2,isequalto
(OnlineApril11,2015)
Options:
A.14.7C3
B.16.7C3
C.14.7C2
D.12. .7C2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question146
Letf :RRbedefinedbyf (x) = |x| 1
|x| + 1thenfis:
[OnlineApril19,2014]
Options:
A.bothone-oneandonto
f3(x) = f2+1(x) = f0(f2(x)) = f0(x) = 1
1x
f4(x) = f3+1(x) = f0(f3(x)) = x1
x
f0=f3=f6= .... = 1
1x
f1=f4=f7= ...... = x1
x
f2=f5=f8= ........ = x
f100(3) = 31
3=2
3f1
2
3 =
2
31
2
3
= 1
2
f2
3
2=3
2
f100(3) + f1
2
3+f2
3
2=5
3
( )
( )
( ) ( )
NumberofontofunctionsuchthatexactlythreeelementsinxAsuchthatf(x) = 1
2isequalto
=7C3, {242} = 14 .7C3
B.one-onebutnotonto
C.ontobutnotone-one
D.neitherone-onenoronto.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question147
LetPbetherelationdefinedonthesetofallrealnumberssuchthat
P= {(a,b) : sec2atan2b=1}.ThenPis:
[OnlineApril9,2014]
Options:
A.reflexiveandsymmetricbutnottransitive.
B.reflexiveandtransitivebutnotsymmetric.
C.symmetricandtransitivebutnotreflexive.
D.anequivalencerelation.
Answer:D
Solution:
Solution:
f(x) = |x| 1
|x| + 1
forone-onefunctioniff(x1) = f(x2)then
x1mustbeequaltox2
Letf(x1) = f(x2)
|x1| 1
|x1| + 1=|x2| 1
|x2| + 1|x1||x2|+|x1|−|x2| 1= | x1||x2|−|x1|+|x2| 1
| x1|−|x2|=|x2|−|x1|
2|x1| = 2|x2|
|x1|= |x2|
x1=x2,x1= x2
herex1hastwovaluesthereforefunctionismanyonefunction.
Foronto:f(x) = |x| 1
|x| + 1
foreveryvalueoff(x)thereisavalueofxindomainset.
Iff(x)isnegativethenx=0
forallpositivevalueoff(x),domaincontainatleastoneelement.Hencef(x)isontofunction.
P= {(a,b) : sec2atan2b=1}
Forreflexive:
sec2atan2a=1(truea)
Forsymmetric:
sec2btan2a=1
L.H.S
1+tan2b (sec2a1) = 1+tan2bsec2a+1
= (sec2atan2b) + 2
-------------------------------------------------------------------------------------------------
Question148
Letf (n) = 1
3+3n
100 n,where[n]denotesthegreatestintegerlessthan
orequalton.Then 56
n=1f(n)isequalto:
[OnlineApril19,2014]
Options:
A.56
B.689
C.1287
D.1399
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question149
Letf beanoddfunctiondefinedonthesetofrealnumberssuchthat
forx 0,f(x) = 3 sin x +4 cos xThenf (x)atx = 11π
6isequalto:
[OnlineApril11,2014]
Options:
A. 3
2+23
[ ]
= 1+2=1
So,RelationissymmetricFortransitive:
ifsec2atan2b=1andsec2btan2c=1
sec2atan2c = (1+tan2b) (sec2b1)
= sec2b+tan2b+2
= 1+2=1
So,Relationistransitive.
Hence,RelationPisanequivalencerelation
Letf(n) = 1
3+3n
100 n
where[n]isgreatestintegerfunction,
=0.33 +3n
100 n
Forn=1,2, ..., 22,wegetf(n) = 0andforn=23,24, ..., 55,wegetf(n) = 1×nForn=56,f(n) = 2×n
So,
56
n=1
f(n) = 1(23) + 1(24) + ... + 1(55) + 2(56)
= (23 +24 + ... + 55) + 112
=33
2[46 +32] + 112
=33
2(78) + 112 =1399
[ ]
[ ]
B.3
2+23
C. 3
223
D.3
223
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question150
Ifgistheinverseofafunctionf andf ′(x) = 1
1+x5,theng′(x)isequalto:
[2014]
Options:
A. 1
1+ {g(x)}5
B.1 + {g(x)}5
C.1 +x5
D.5x4
Answer:B
Solution:
Solution:
Givenfbeanoddfunction
f(x) = 3 sin x +4 cos x
Now,f11π
6=3 sin 11π
6+4 cos 11π
6
f11π
6=3 sin +π
6+4 cos +π
6
f11π
6=3 sin π
6+4 cos π
6
Foroddfunctions
sin(−θ) = sin θ
and cos(−θ) = cos θ
f11π
6= 3 sin π
64 cos π
6
f11π
6= +3 sin π
64 cos π
6
f11π
6=3×1
24×3
2
orf11π
6=3
223
( ) ( ) ( )
( ) ( ) ( )
( ) { ( ) } { ( ) }
{ }
( ) ( ) ( )
( ) ( )
( )
( )
Sincef(x)andg(x)areinverseofeachother
g′(f(x)) = 1
f′(x)
-------------------------------------------------------------------------------------------------
Question151
LetR = { (x,y) : x,y N.andx24xy +3y2=0},whereN isthesetof
allnaturalnumbers.ThentherelationRis:
[OnlineApril23,2013]
Options:
A.reflexivebutneithersymmetricnortransitive.
B.symmetricandtransitive.
C.reflexiveandsymmetric,
D.reflexiveandtransitive.
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question152
LetR = { (3,3)(5,5), (9,9), (12,12), (5,12),(3,9), (3,12), (3,5) }bea
relationonthesetA = {3,5,9,12}.Then,Ris:
[OnlineApril22,2013]
Options:
A.reflexive,symmetricbutnottransitive.
B.symmetric,transitivebutnotreflexive.
C.anequivalencerelation.
D.reflexive,transitivebutnotsymmetric.
Answer:D
g′(f(x)) = 1+x5 f′(x) = 1
1+x5
Herex=g(y)
g′(y) = 1+ [g(y)]5
g′(x) = 1+ (g(x))5
( )
R= { (x,y) : x,yNandx24xy +3y2=0}
Now,x24xy +3y2=0
(xy)(x3y) = 0
x=yorx=3y
R= { (1,1), (3,1), (2,2), (6,2),(3,3)(9,3), ...... }
Since(1,1), (2,2), (3,3), ......arepresentintherelation,thereforeRisreflexive.
Since(3,1)isanelementofRbut(1,3)isnottheelementofR,thereforeRisnotsymmetric
Here(3,1)∈Rand(1,1)∈R (3,1) R(6,2)∈Rand(2,2)∈R (6,2) R
Forallsuch(a,b) Rand(b,c) R
(a,c) R
HenceRistransitive.
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question153
LetA = {1,2,3,4}andR :AAbetherelationdefinedby
R= {(1,1), (2,3), (3,4), (4,2)}.Thecorrectstatementis:
[OnlineApril9,2013]
Options:
A.Rdoesnothaveaninverse.
B.Risnotaonetoonefunction.
C.Risanontofunction.
D.Risnotafunction.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question154
IfP(S)denotesthesetofallsubsetsofagivensetS,thenthenumberof
one-to-onefunctionsfromthesetS={1,2,3}tothesetP(S)is
[OnlineMay19,2012]
Options:
A.24
B.8
C.336
D.320
Answer:C
LetR= { (3,3), (5,5), (9,9), (12,12),(5,12), (3,9), (3,12),(3,5)\}bearelationonset
A= {3,5,9,12}
Clearly,everyelementofAisrelatedtoitself.
Therefore,itisareflexive.
Now,Risnotsymmetrybecause3isrelatedto5but5isnotrelatedto3.
AlsoRistransitiverelationbecauseitsatisfiesthepropertythatifaRbandbRcthenaRc.
Domain = {1,2,3,4}
Range = {1,2,3,4}
∴Domain=Range
HencetherelationRisontofunction.
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question155
IfA = { xz+:x<10andxisamultipleof3or4 },wherez+istheset
ofpositiveintegers,thenthetotalnumberofsymmetricrelationsonA
is.
[OnlineMay12,2012]
Options:
A.25
B.215
C.210
D.220
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question156
LetS= {1,2,3} n(S) = 3
Now,P(S) = setofallsubsetsofS
totalno.ofsubsets = 23=8
n[P(S)] = 8
Now,numberofone-to-onefunctionsfromSP(S)is8P3=8!
5!=8×7×6=336
ArelationonasetAissaidtobesymmetriciff(a,b)in A (b,a) A, a,bA
HereA= {3,4,6,8,9}
NumberoforderpairsofA×A=5×5=25
Divide25orderpairsofA times Ain3partsasfollows:
Part–A:(3,3),(4,4),(6,6),(8,8),(9,9)
Part–B:(3,4),(3,6),(3,8),(3,9),(4,6),(4,8),(4,9),(6,8),(6,9),(8,9)
Part–C:(4,3),(6,3),(8,3),(9,3),(6,4),(8,4),(9,4),(8,6),(9,6),(9,8)
Inpart–A,bothcomponentsofeachorderpairaresame.
Inpart–B,bothcomponentsaredifferentbutnottwosuchorderpairsarepresentinwhichfirstcomponentofoneorder
pairisthesecondcomponentofanotherorderpairandvice-versa.
Inpart–C,onlyreverseoftheorderpairsofpart–Barepresenti.e.,if(a,b)ispresentinpart–B,then(b,a)willbe
presentinpart–C
Forexample(3,4)ispresentinpart–Band(4,3)presentinpart–C.
NumberoforderpairinA,BandCare5,10and10respectively.
InanysymmetricrelationonsetA,ifanyorderpairofpart–Bispresentthenitsreverseorderpairofpart–Cwillmust
bealsopresent.
HencenumberofsymmetricrelationonsetAisequaltothenumberofallrelationsonasetD,whichcontainsallthe
orderpairsofpart–Aandpart–B.
Nown(D) = n(A) + n(B) = 5+10 =15
HencenumberofallrelationsonsetD= (2)15
⇒NumberofsymmetricrelationsonsetD= (2)15
Therangeofthefunctionf (x) = x
1+ | x|,xR,is
[OnlineMay7,2012]
Options:
A.R
B.(-1,1)
C.R {0}
D.[-1,1]
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question157
LetAandBbenonemptysetsinRandf :ABisabijectivefunction.
Statement1:f isanontofunction.
Statement2:Thereexistsafunctiong :BAsuchthatfog =IB
[OnlineMay26,2012]
Options:
A.Statement1istrue,Statement2isfalse.
B.Statement1istrue,Statement2istrue;Statement2isacorrectexplanationforStatement
1.
C.Statement1isfalse,Statement2istrue.
D.Statement1istrue,Statement2istrue,Statement2isnotthecorrectexplanationfor
Statement1.
Answer:D
Solution:
Solution:
f(x) = x
1+ | x|,xR
Ifx>0, | x=xf(x) = x
1+x
whichisnotdefinedforx= 1
Ifx<0, | x= xf(x) = x
1xwhichisnotdefinedforx=1
Thusf(x)definedforallvaluesofRexcept1and-1
Hence,range = (−1,1)
|
|
LetAandBbenon-emptysetsinR.
Letf:ABisbijectivefunction.
Clearlystatement-1istruewhichsaysthatfisanontofunction.
Statement-2isalsotruestatementbutitisnotthecorrectexplanationforstatement-1
-------------------------------------------------------------------------------------------------
Question158
LetRbethesetofrealnumbers.
Statement-1:A = { (x,y) R×R:yxisaninteger}isanequivalence
relationonR.
Statement-2:B = { (x,y) R×R:x=αyforsomerationalnumberα }
isanequivalencerelationonR.
[2011]
Options:
A.Statement-1istrue,Statement-2istrue;Statement-2isnotacorrectexplanationfor
Statement-1.
B.Statement-1istrue,Statement-2isfalse.
C.Statement-1isfalse,Statement-2istrue.
D.Statement-1istrue,Statement-2istrue;Statement-2isacorrectexplanationforStatement-
1.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question159
Thedomainofthefunctionf (x) = 1
√|x| xis
[2011]
Options:
A.(0,)
B.(−,0)
C.(−,) {0}
D.(−,)
Answer:B
Solution:
xx=0I( Risreflexive)
Let(x,y) RasxyandyxI( Rissymmetric)
NowxyIandyzIxzI
So,Ristransative.
HenceRisequivalence.
Similarlyasx=αyforα=1.Bisreflexivesymmetricandtransative.HenceBisequivalence.
Bothrelationsareequivalencebutnotthecorrectexplanation.
Solution:
-------------------------------------------------------------------------------------------------
Question160
Letf beafunctiondefinedby
f(x) = (x1)2+1, (x1)
Statement-1:Theset{x:f(x) = f1(x)} = {1,2}
Statement-2:f isabijectionandf 1(x) = 1+ x1,x1
[2011RS]
Options:
A.Statement-1istrue,Statement-2istrue;Statement-2isacorrectexplanationforStatement-
1.
B.Statement-1istrue,Statement-2istrue;Statement-2isNOTacorrectexplanationfor
Statement-1.
C.Statement-1istrue,Statement-2isfalse.
D.Statement-1isfalse,Statement-2istrue.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question161
Considerthefollowingrelations:
R= { (x,y) | x,yarerealnumbersandx =wyforsomerationalnumber
w}; S=m
n,p
qm,n,p.andqareintegerssuchthatn,q0and
qm =pn }
.Then
[2010]
Options:
{ ( ) |
f(x) = 1
|x| x,f(x)isdefineif|x| x>0
| x| >x, x<0
Hencedomainoff(x)is(−,0)
Givenfisabijectivefunction
f: [1,) [1,)
f(x) = (x1)2+1,x1
Lety= (x1)2+1(x1)2=y1
x=1± y1f1(y) = 1± y1
f1(x) = 1+ x1{∴x1}
Hencestatement-2iscorrect
Nowf(x) = f1(x)
f(x) = x (x1)2+1=x
x23x +2=0x=1,2
Hencestatement-1iscorrect
A.NeitherRnorSisanequivalencerelation
B.SisanequivalencerelationbutRisnotanequivalencerelation
C.RandSbothareequivalencerelations
D.RisanequivalencerelationbutSisnotanequivalencerelation
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question162
Letf (x) = (x+1)21,x 1
Statement-1:Theset{x:f(x) = f1(x) = {0, 1}.
Statement-2:f isabijection.
[2009]
Options:
A.Statement-1istrue,Statement-2istrue.Statement-2isnotacorrectexplanationfor
Statement-1.
B.Statement-1istrue,Statement-2isfalse.
C.Statement-1isfalse,Statement-2istrue.
D.Statement-1istrue,Statement-2istrue.Statement-2isacorrectexplanationforStatement-
1.
Answer:D
Solution:
Solution:
LetxRy.
x=wy y=x
w
(y,x) R
Risnotsymmetric
LetS:m
nSp
q
qm =pn p
q=m
n
m
n=m
n∴reflexive
m
n=p
qp
q=m
n∴symmetric
Letm
nSp
q,p
qSr
s
qm =pn,ps =rq
p
q=m
n=r
s
ms =rntransitive
.Sisanequivalencerelation.
Giventhatf(x) = (x+1)21,x 1
-------------------------------------------------------------------------------------------------
Question163
LetRbetherealline.ConsiderthefollowingsubsetsoftheplaneR ×R
:
S= { (x,y) : y=x+1and0 <x<2}
T= { (x,y) : xyisaninteger}
Whichoneofthefollowingistrue?
[2008]
Options:
A.NeitherSnorT isanequivalencerelationonR
B.BothSandT areequivalencerelationonR
C.SisanequivalencerelationonRbutT isnot
D.T isanequivalencerelationonRbutSisnot
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question164
ClearlyDf= [−1,)butco-domainisnotgiven.Thereforef(x)isonto.
Letf(x1) = f(x2)
(x1+1)21= (x2+1)21
x1=x2
f(x)isone-one,hencef(x)isbijection
(x+1)beingsomething+ve, x> 1
f1(x)willexist.Let(x+1)21=y
x+1= y+1(+vesquarerootasx+10)
x= 1+ y+1
f1(x) = x+11
Thenf(x) = f1(x)
(x+1)21= x+11
(x+1)2= x+1(x+1)4= (x+1)
(x+1)[(x+1)31] = 0⇒x= 1,0
∴Thestatement-1andstatement-2botharetrue.
Giventhat
S= { (x,y) : y=x+1and0<x<2}
xx+1foranyx (0,2)
(x,x) S
So,Sisnotreflexive.
Hence,Sinnotanequivalencerelation.
GivenT= {x,y) : xyisaninteger}
xx=0isaninteger,xR
So,Tisreflexive.
Let(x,y) Txyisanintegerthenyxisalsoaninteger⇒(y,x) R
Tissymmetric
Ifxyisanintegerandyzisanintegerthen(xy) + (yz) = xzisalsoaninteger.
Tistransitive
HenceTisanequivalencerelation.
Letf :NY beafunctiondefinedasf (x) = 4x +3where
Y= { yN:y=4x +3forsomex N}.
Showthatf isinvertibleanditsinverseis
[2008]
Options:
A.g(y) = 3y +4
3
B.g(y) = 4+y+3
4
C.g(y) = y+3
4
D.g(y) = y3
4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question165
LetWdenotethewordsintheEnglishdictionary.DefinetherelationR
byR = (x,y) W×W|thewordsxandyhaveatleastoneletterin
common.}ThenRis
[2006]
Options:
A.notreflexive,symmetricandtransitive
B.relexive,symmetricandnottransitive
C.reflexive,symmetricandtransitive
D.reflexive,notsymmetricandtransitive
Answer:B
Solution:
Solution:
Clearlyf(x) = 4x +3isoneoneandonto,soitisinvertible.
Letf(x) = 4x +3=y
x=y3
4
g(y) = y3
4
Clearly(x,x) R, xW
∵Allletterarecommoninsomeword.SoRisreflexive.
Let(x,y) R,then(y,x) Rasxandyhaveatleastoneletterincommon.So,Rissymmetric.
ButRisnottransitiveforexample
Letx=BOY ,y= TOYandz= THREE
-------------------------------------------------------------------------------------------------
Question166
Arealvaluedfunctionf (x)satisfiesthefunctionalequation
f(xy) = f(x)f(y) f(ax)f(a+y)whereaisagivenconstantand
f(0) = 0,f(2a x)isequalto
[2005]
Options:
A.f(x)
B.f (x)
C.f (a) + f(ax)
D.f (−x)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question167
LetR={(3,3),(6,6),(9,9),(12,12),(6,12),(3,9),(3,12),(3,6)}bea
relationontheset
A={3,6,9,12}.Therelationis
[2005]
Options:
A.reflexiveandtransitiveonly
B.reflexiveonly
C.anequivalencerelation
D.reflexiveandsymmetriconly
Answer:A
Solution:
then(x,y) R(O,Yarecommon)and(y,z) R(Tiscommon)but(x,z) R.(asnoletteriscommon)
Giventhatf(0) = 0andput
x=0,y=0
f(0) = f2(0) f2(a)
f2(a) = 0f(a) = 0
f(2a x) = f(a (xa))
=f(a)f(xa) f(0)f(x)
=f(a)f(xa) f(x) = f(x)
f(2a x) = f(x)
Solution:
-------------------------------------------------------------------------------------------------
Question168
Letf : (−1,1) B,beafunctiondefinedbyf (x) = tan12x
1x2,thenf is
bothoneoneandontowhenBistheinterval
[2005]
Options:
A. 0,π
2
B. 0,π
2
C. π
2,π
2
D. π
2,π
2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question169
Thegraphofthefunctiony =f(x)issymmetricalaboutthelinex =2,
then
[2004]
Options:
A.f (x) = f(−x)
B.f (2+x) = f(2x)
( )
[ )
[ ]
( )
Risreflexiveandtransitiveonly.
Here(3,3), (6,6), (9,9), (12,12) R[So,reflexive]
(3,6), (6,12), (3,12) R[So,transitive]
(3,6) Rbut(6,3)∉R[So,non-symmetric]
Givenf(x) = tan12x
1x2=2tan1x
forx (−1,1)
Ifx (−1,1) tan1xπ
4,π
4
2tan1xπ
2,π
2
Clearly,rangeoff(x) = π
2,π
2
Forftobeonto,codomain=range
∴Co-domainoffunction = B= π
2,π
2
( )
( )
( )
( )
( )
C.f (x) = f(−x)
D.f (x+2) = f(x2)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question170
LetR={(1,3),(4,2),(2,4),(2,3),(3,1)}bearelationonthesetA={1,
2,3,4}..TherelationRis
[2004]
Options:
A.reflexive
B.transitive
C.notsymmetric
D.afunction
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question171
(b)Giventhatagraphsymmetrical.withrespecttolinex=2asshowninthefigure.
Fromthefigure
f(x1) = f(x2), where x1=2x and x2=2+x
f(2x) = f(2+x)
(1,1) RRisnotreflexive
(2,3) Rbut(3,2)∉R
Risnotsymmetric
(4,2)and(2,4)∈Rbut(4,4)∉R
Risnottransitive
Iff :RS,definedbyf (x) = sin x 3cos x +1,isonto,thenthe
intervalofSis
[2004]
Options:
A.[-1,3]
B.[-1,1]
C.[0,1]
D.[0,3]
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question172
Domainofdefinitionofthefunctionf (x) = 3
4x2+log10(x3x),is
[2003]
Options:
A.(-1,0)(1,2) (2,)
B.(a,2)
C.(-1,0)(a,2)
D.(1,2)(2,)
Answer:A
Solution:
Solution:
Giventhatf(x)isonto
∴rangeoff(x) = codomain=S
Now,f(x) = sin x 3 cos x +1
=2 sin x π
3+1
weknowthat−1sin x π
31
12 sin x π
3+13∴f(x) [−1,3] = S
( )
( )
( )
f(x) = 3
4x2+log10(x3x)
4x20;x3x>0
x ±4and−1<x<0or1<x<
-------------------------------------------------------------------------------------------------
Question173
Iff :RRsatisfiesf (x+y) = f(x) + f(y),forallx,
yRandf (1) = 7,then n
r=1f(r)is
[2003]
Options:
A. 7n(n+1)
2
B. 7n
2
C. 7(n+1)
2
D.7n + (n+1)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question174
Afunctionffromthesetofnaturalnumberstointegersdefinedby
f(n) =
n1
2,when n is odd
n
2,when n is even
is
[2003]
Options:
A.neitherone-onenoronto
{
D= (−1,0) (1,) {√4}
D= (−1,0) (1,2) (2,)
f(x+y) = f(x) + f(y)
f(1) = 7
f(2) = f(1+1) = f(1) + f(1) = 14
f(3) = f(1+2) = f(1) + f(2) = 21
___________
___________
n
r=1
f(r) = 7(1+2+3..... + n)
=7n(n+1)
2
B.one-onebutnotonto
C.ontobutnotone-one
D.one-oneandontoboth.
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Wehavef:NI
Letxandyaretwoevennaturalnumbers,andf(x) = f(y) x
2=y
2x=y
f(n)isone-oneforevennaturalnumber.
Letxandyaretwooddnaturalnumbersandf(x) = f(y) x1
2=y1
2x=y
f(n)isone-oneforoddnaturalnumber.
Hencefisone-one.
Lety=n1
22y +1=n
ThisshowsthatnisalwaysoddnumberforyI......(i)
andy=n
2 2y =n
ThisshowsthatnisalwaysevennumberforyI......(ii)
From(i)and(ii)
Rangeoff=I= codomain
fisonto.
Hencefisoneoneandontoboth.