VectorAlgebra
Question1
Let
a=^
i+2^
j+k,
b=3^
i^
j+k .Let
cbethevectorsuchthat
a×
c=
b
and
a
c=3.Then
a
c×
b
b
cisequalto:
[27-Jan-2024Shift1]
Options:
A.32
B.24
C.20
D.36
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question2
Theleastpositiveintegralvalueofα,forwhichtheanglebetweenthe
vectorsα^
i2^
j+2kandα^
i+^
j2kisacute,is___
[27-Jan-2024Shift1]
( )
( ( ) )
Answer:5
Solution:
-------------------------------------------------------------------------------------------------
Question3
Let
a,
band
cbethreenon-zerovectorssuchthat
band
carenon-
collinear.if
a+5
biscollinearwith
c,
b+6
ciscollinearwith
aand
a+α
b+β
c=
0,thenα +βisequalto
[29-Jan-2024Shift1]
Options:
A.35
B.30
C.-30
D.-25
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question4
Let
OA =
a,
OB =12
a+4
band
OC =
b,whereOistheorigin.IfSisthe
parallelogramwithadjacentsidesOAandOC,then areaofthequadrilateral OABC
areaofS
isequalto
[29-Jan-2024Shift2]
Options:
A.6
B.10
C.7
D.8
Answer:D
Solution:
Solution:
Question5
Let
OA =
a,
OB =12
a+4
band
OC =
b,whereOistheorigin.IfSisthe
parallelogramwithadjacentsidesOAandOC,then areaofthequadrilateral OABC
areaofS
isequalto
[29-Jan-2024Shift2]
Options:
A.6
B.10
C.7
D.8
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question6
Let
a=ai
^
i+a2
^
j+a3
^
kand
b=b1
^
i+b2
^
j+b3
^
kbetwovectorssuchthat
a=1;
a
b=2and
b=4.If
c=2
a×
b3
b,thentheanglebetween
band
cisequalto:
[30-Jan-2024Shift1]
Options:
A.cos12
3
B.cos11
3
C.cos13
2
D.cos12
3
Answer:C
Solution:
| | | | ( )
( )
( )
( )
( )
-------------------------------------------------------------------------------------------------
Question7
Letaunitvector ^
u=x˙^
i+y^
j+z^
kmakeangles π
2,π
3and
3withthe
vectors 1
2
^
i+1
2
^
k,1
2
^
j+1
2
^
kand 1
2
^
i+1
2
^
jrespectively.If
v=1
2
^
i+1
2
^
j+1
2
^
k,then ^
u
v2isequalto
[29-Jan-2024Shift2]
Options:
A. 11
2
B. 5
2
C.9
D.7
| |
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question8
LetA(2,3,5)andC(−3,4, 2)beoppositeverticesofaparallelogram
ABCDifthediagonal
BD =^
i+2^
j+3^
kthentheareaoftheparallelogram
isequalto
[30-Jan-2024Shift1]
Options:
A. 1
2410
B. 1
2474
C. 1
2586
D. 1
2306
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question9
Let
a=^
i+α^
j+β^
k,α,βR.Letavector
bbesuchthattheangle
between
aand
bis π
4and
b
2=6,If
a
b=32,thenthevalueof
(α2+β2)
a×
b|2isequalto
[30-Jan-2024Shift2]
Options:
A.90
B.75
C.95
D.85
Answer:A
Solution:
Solution:
| |
|
-------------------------------------------------------------------------------------------------
Question10
Let
aand
bbetwovectorssuchthat
b=1and
b×
a=2.Then
b×
a
b
2isequalto
[30-Jan-2024Shift2]
Options:
A.3
B.5
C.1
D.4
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question11
Let
a=3^
i+^
j2^
k,
b=4^
i+^
j+7^
kand
c=^
i3^
j+4^
kbethreevectors.
Ifavectors
psatisfies
p×
b=
c×
band
p
a=0,then
p^
i^
j^
kis
| | | |
| ( ) |
( )
equalto
[31-Jan-2024Shift1]
Options:
A.24
B.36
C.28
D.32
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question12
Let
aand
bbetwovectorssuchthat
a=1,
b=4and
a
b=2.If
c=2
a×
b3
bandtheanglebetween
band
cisα,then192sin 2αis
equalto____
[31-Jan-2024Shift1]
Answer:48
Solution:
| | | |
( )
-------------------------------------------------------------------------------------------------
Question13
Let
a=3^
i+2^
j+^
k,
b=2^
i^
j+3^
kand
cbeavectorsuchthat
a+
b×
c=2
a×
b+24^
j6^
kand
a
b+^
i
c= 3.Then
c2is
equalto____
[31-Jan-2024Shift2]
Answer:38
Solution:
( ) ( ) ( ) | |
-------------------------------------------------------------------------------------------------
Question14
Let
a= 5^
i+^
j3^
k,
b=^
i+2^
j4^
kand
c=
a×
b×^
i×^
i×^
i.Then
c ^
i+^
j+^
kisequalto
[1-Feb-2024Shift1]
Options:
A.-12
B.-10
C.-13
D.-15
Answer:A
Solution:
Solution:
( ( ( ) ) )
( )
-------------------------------------------------------------------------------------------------
Question15
ConsideraABCwhereA(1,2,3),, B(−2,8,0)andC(3,6,7).Ifthe
anglebisectorofBACmeetsthelineBCatD,thenthelengthofthe
projectionofthevector
ADonthevector
ACis:
[1-Feb-2024Shift2]
Options:
A. 37
238
B. 38
2
C. 39
238
D.19
Answer:A
Solution:
Solution:
A(1,3,2); B(−2,8,0); C(3,6,7);
AC =2^
i+3^
j+5^
k
AB = 9+25 +4= 38
AC = 4+925 38
AD =1
2
^
i4^
j3
2
^
k = 1
2
^
i8^
j3^
k
( )
-------------------------------------------------------------------------------------------------
Question16
Let
a=^
i+^
j+^
k,
b= ^
i8^
j+2^
kand
c=4^
i+c2
^
j+c3
^
kbethree
vectorssuchthat
b×
a=
c×
a.Iftheanglebetweenthevector
candthe
vector3^
i+4^
j+^
kisθ,thenthegreatestintegerlessthanorequalto
tan2θis:
[1-Feb-2024Shift2]
Answer:38
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question17
Let
a,
band
cbethreenon-zeronon-coplanarvectors.Lettheposition
vectorsoffourpointsA,B,CandDbe
a
b+
c,λ
a3
b+4
c,
a+2
b3
cand2
a4
b+6
crespectively.If
AB,
ACand
ADarecoplanar,
thenλis:
OfficialAns.byNTA
[29-Jan-2023Shift1]
Lengthofprojectionof
ADon
AC
=
AD
AC
AC
=37
238
|| | |
a=^
i+^
j+^
k
b= ^
i8^
j+2^
k
c=4^
i+c2
^
j+c3
^
k
b×
a=
c×
a
b
c×
a=0
b
c=λ
α
b=
c+λ
α
^
i8^
j+2^
k=4^
i+c2
^
j+c3
^
k+λ^
i+^
j+^
k
λ+4= 1λ= 5
λ+c2= 8c2= 3
λ+c3=2c3=7
c=4^
i3^
j+7k
cos θ =12 12 +7
26 74 = 7
26 74 =7
2481
tan2θ=625 ×3
49
[tan2θ] = 38
( )
( ) ( )
Answer:2
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question18
Let
u=
i
j2k,
v=2
i+
jk,
v
w=2 and
v×
w=
u+λ
v.Then
u
wis
equalto
[24-Jan-2023Shift1]
Options:
A.1
B. 3
2
C.2
D.2
3
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
AB = (λ1)a2b +3c
AC =2a +3b 4c
AD =a3b +5c
λ123
234
135
=0
(λ1)(15 12) + 2(−10 +4) + 3(63) = 0
(λ1) = 1λ=2
| |
u= (1, 1, 2),
v= (2,1, 1),
v
w=2
v×
w=
u+λ
v............... (1)
Takingdotwith
w in (1)
W
v×
w=
u
w+λ
v
w
0=
u
w+
Takingdotwith
v in (1)
v
v×
w=
u
v+λ
v
v
0= (21+2) + λ(6)
λ= 1
2
u
w= =1
( )
( )
Question19
Let
α=4^
i+3^
j+5^
kand
β=^
i+2^
j4^
k.Let
β1beparallelto
αand
β2be
perpendicularto
α.If
β=
β1+
β2,thenthevalueof5
β2^
i+^
j+^
kis
[24-Jan-2023Shift2]
Options:
A.6
B.11
C.7
D.9
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question20
Let
a=^
i+2^
j+λ^
k,
b=3^
i5^
jλ^
k,
a
c=7,
2
b
c+43 =0,
a×
c=
b×
c.Then
a
bisequalto
[24-Jan-2023Shift2]
Answer:8
Solution:
( )
| |
Let
β1=λ
α
Now
β2=
β
β1
=
i+2
j4
kλ 4
i+3
j+5
k
= (1)
i+ (2)
j ( +4)
k
β2
α=0
4(1) + 3(2) 5( +4) = 0
416α +6 25λ 20 =0
50λ = 10
λ=1
5
β2=1+4
5
^
i+2+3
5
^
j (−1+4)^
k
β2=9
5
i+13
5
j3
k
5
β2=9^
i+13 ^
j15 ^
k
5
β2
i+
j+
k=9+13 15 =7
( ) ( )
( ) ( )
( )
-------------------------------------------------------------------------------------------------
Question21
Thevector
a= ^
i+2^
j+^
kisrotatedthrougharightangle,passing
throughthey-axisinitswayandtheresultingvectoris
b.Thenthe
projectionof3
a+ 2
bon
c=5^
i+4^
j+3^
kis
[25-Jan-2023Shift1]
Options:
A.32
B.1
C.6
D.23
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question22
Let
a,
band
cbethreenonzerovectorssuchthat
b
c=0and
a=^
i+2^
j+λ^
k,
b=3^
i5^
jλ^
k,
a
c=7
a×
c
b×
c=
0
a
b×
c=0
a
bisparalleledto
c
a
b=µ
c,whereµisascalar
2^
i+7^
j+^
k=µ
c
Now
a
c=7gives2+12 =
And
b
c= 43
2gives2+82 =43µ
µ=2andλ2=1
a
b=8
( ) ( )
| |
b=λ
a×
a×^
j
b=λ2^
i2^
j+2^
k
b=
a 6= 12 λ λ= ± 1
2
λ=1
2rejected
b makesacuteanglewithyaxis
b= 2^
i^
j+^
k
3
a+ 2
b
c
c=32
( )
( )
|||| | |
()
( )
()| |
a×
b×
c=
b
c
2.If
dbeavectorsuchthat
b
d=
a
b,then
a×
b
c×
disequalto
[25-Jan-2023Shift1]
Options:
A. 3
4
B. 1
2
C.1
4
D. 1
4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question23
Ifthefourpoints,whosepositionvectorsare
3^
i4^
j+2^
k,^
i+2^
j^
k, 2^
i^
j+3^
kand5^
i^
j+4^
karecoplanar,then
αisequalto
[25-Jan-2023Shift2]
Options:
A. 73
17
B.107
17
C.73
17
D. 107
17
Answer:A
()
( ) ( )
a
c
b
a
b
c=
b
c
2
a
c=1
2,
a
b=1
2
b
d=1
2
a×
b
c×
d=
a
b×
c×
d
=
a
b
d
c
b
c
d
=
a
c
b
d=1
4
()()
( ) ( ) ( ( ) )
( ( ) ( ))
()()
Solution:
-------------------------------------------------------------------------------------------------
Question24
Let
a= ^
i^
j+^
k,
a
b=1and
a×
b=^
i^
j.Then
a6
bisequalto
[25-Jan-2023Shift2]
Options:
A.3
i
j
k
B.3
i+
j+
k
C.3
i
j+
k
D.3
i+
j
k
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question25
Ifthevectors
a=λ^
i+µ^
j+4^
k,
b= 2^
i+4^
j2^
kand
c=2^
i+3^
j+^
kare
coplanarandtheprojectionof
aonthevector
bis54units,thenthe
sumofallpossiblevaluesofλ +µisequalto
[29-Jan-2023Shift1]
( )
( )
( )
( )
LetA: (3, 4,2)
C: (−2, 1,3)
B: (1,2, 1)D: (5, ,4)
A,B,C,Darecoplanarpoints,then
13 2 +412
231+4 3 2
53 +4 4 2
=0
α=73
17
| |
a×
b=^
i^
j
Takingcrossproductwith
a
a×
a×
b=
a×^
i^
j
a
b
a
a
a
b=^
i+^
j+2^
k
a3
b=^
i+^
j+2^
k
2
a6
b=2^
i+2^
j+4^
k
a6
b=3^
i+3^
j+3^
k
( )
( ) ( )
( ) ( )
Options:
A.0
B.6
C.24
D.18
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question26
Let
a,
band
cbethreenon-zeronon-coplanarvectors.Lettheposition
vectorsoffourpointsA,B,CandDbe
a
b+
c,λ
a3
b+4
c,
a+2
b3
cand2
a4
b+6
crespectively.If
AB,
ACand
ADarecoplanar,
thenλis:
OfficialAns.byNTA
[29-Jan-2023Shift1]
Answer:2
Solution:
λ µ 4
242
2 3 1
=0
λ(10) µ(2) + 4(−14) = 0
10λ =56
µ=28...(1)
a
b
b
= 54
+ 8 24 = 54
+ 8= 54 ×24...(2)
Bysolvingequation(1)&(2)
λ+µ=24
| |
| |
AB = (λ1)a2b +3c
AC =2a +3b 4c
AD =a3b +5c
λ123
234
135
=0
(λ1)(15 12) + 2(−10 +4) + 3(63) = 0
(λ1) = 1λ=2
| |
-------------------------------------------------------------------------------------------------
Question27
Let
a=4^
i+3^
jand
b=3^
i4^
j+5^
kand
cisavectorsuchthat
c
a×
b+25 =0,
c^
i+^
j+^
k=4andprojectionof
con
ais1,then
theprojectionof
con
bequals:
[29-Jan-2023Shift2]
Options:
A. 5
2
B. 1
5
C. 1
2
D. 3
2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question28
If
a=^
i+2^
k,
b=^
i+^
j+^
k,
c=7^
i3^
k+4^
k
r×
b+
b×
c=
0and
r
a=0
then
r
cisequalto:
[29-Jan-2023Shift2]
Options:
A.34
B.12
C.36
D.30
( ) ( )
a×
b=15 ^
i20 ^
j25 ^
k
Let
c=x^
i+y^
j+z^
k
15x 20y 25z +25 =0
3x 4y 5z = 5
Alsox+y+z=4
and
c
a
a
=14x +3y =5
c=2^
i^
j+3^
k
Projectionof
cor
b=25
52=5
2
| |
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question29
If
a,
b,
carethreenon-zerovectorsand ^
nisaunitvectorperpendicular
to
csuchthat
a=α
b^
n, (α0)and
b
c=12,then
c×
a×
bis
equalto:
[30-Jan-2023Shift1]
Options:
A.15
B.9
C.12
D.6
Answer:C
Solution:
| ( ) |
r×
b
c×
b=0
r
c×
b=0
r
c=λ
b
r=
c+λ
b
Andgiventhat
r
a=0
c+λ
b
a=0
c
a+λ
b
a=0
λ=
c
a
b
a
Now
r
c=
c+λ
b
c
=
c
c
a
b
a
b
c
=
c
c
a
b
a
b
c
=74 15
38
=74 40 =34
()
( )
( )
( )
|| ( ) ( )
[ ]
^
n
c
a=α
b
n
b
c=12
a
c=α
b
c
n
c
a
c=α
bc
c×
a×
b=
c
b
a
c
a
b
=
c
b
aα
b
c
b
()
( )
| ( ) | | ( ) ( )|
| ( ) ( )|
-------------------------------------------------------------------------------------------------
Question30
Letλ ℝ,
a=λ^
i+2^
j3^
k,
b=^
iλ^
j+2^
k.
If
a+
b×
a×
b×
a
b=8^
i40^
j24^
k,then
λ
a+
b×
a
b
2isequalto
[30-Jan-2023Shift2]
Options:
A.140
B.132
C.144
D.136
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question31
( ( ) ( ) ) ( )
| ( ) ( ) |
=
c
b
aα
b
=12 ×
n
=12 ×1
=12
| ( ) | | |
( | | )
a=λ^
i+2^
j3^
k
b=^
iλ^
j+2^
k
b
a×
a+
b×
a×
b=8^
i40 ^
j24 ^
k
a
b
a+
b
a×
b=8^
i40j 24 ^
k
8
a×
b=8^
i40 ^
j24 ^
k
Now,
a×
b=
^
i^
j^
k
λ 2 3
1λ2
= (4)^
i ( +3)^
j+ (−λ22)^
k
λ=1
a=^
i+2^
j3^
k
b=^
i^
j+2^
k
a+
b=2^
i+^
j^
k,
a
b=3^
j5^
k
a+
b×
a
b=
^
i^
j^
k
2 1 1
0 3 5
=2^
i+10 ^
j+6^
k
requiredanswer =4+100 +36 =140
()( ( ) ( ) )
( ( ) ( ) ) ( )
( )
| |
( ) ( ) | |
Let
aand
bbetwovectors.Let
a=1,
b=4and
a
b=2.If
c=2
a×
b3
b,thenthevalueof
b
cis
[30-Jan-2023Shift2]
Options:
A.24
B.48
C.84
D.60
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question32
Let
a=2^
i+^
j+^
k,and
band
cbetwononzerovectorssuchthat
a+
b+
c=
a+
b
cand
b.
c=0.Considerthefollowingtwo
statement:
(A)
a+λ
c
aforallλ .
(B)
aand
carealwaysparallel
[31-Jan-2023Shift1]
Options:
A.only(B)iscorrect
B.neither(A)nor(B)iscorrect
C.only(A)iscorrect
D.both(A)and(B)arecorrect.
Answer:C
Solution:
Solution:
| | | |
( )
| | | |
| | | |
c=2
a×
b3
b
b
c=
b2
a×
b3
b
b
= 3|b|2
= 48
( )
( )
a+
b+
c|2=
a+
b
c|2
2
a
b+2
b
c+2
c
a=2
a
b2
b
c2
c
a
4
a
c=0
Bisincorrect
| |
-------------------------------------------------------------------------------------------------
Question33
Let
aand
bbetwovectorsuchthat
a= 14,
b= 6and
a×
b= 48.
Then
a
b
2isequalto_______.
[31-Jan-2023Shift1]
Answer:36
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question34
Let:
a=^
i+2^
j+3^
k,
b=^
i^
j+2^
kand
c=5^
i3^
j+3^
kbetherevectors.
If
risavectorsuchthat,
r×
b=
c×
band
r
a=0.Then25
r|2isequalto
[31-Jan-2023Shift2]
Options:
A.449
B.336
C.339
D.560
Answer:C
Solution:
Solution:
| | | | | |
( )
|
a+λ
c|2
a|2
λ2c20
TrueλR(A)iscorrect.
| |
a= 14,
b= 6
a×
b= 48
a×
b2+
a
b2=
a2×
b2
a
b2=84 48 =36
||| | | |
| | | | | | | |
( )
Sol.
a=i+2 j +3 k
b=ij+2 k
c=^
5i 3^
j+3^
k
r
c×
b=0,
r
a=0
r
c=λ
b
()
-------------------------------------------------------------------------------------------------
Question35
ThefootofperpendicularfromtheoriginOtoaplanePwhichmeets
theco-ordinateaxesatthepointsA,B,Cis(2,a,4), aN .Ifthe
volumeofthetetrahedronOABCis144unit3,thenwhichofthe
followingpointsisNOTonP?
[31-Jan-2023Shift2]
Options:
A.(2,2,4)
B.(0,4,4)
C.(3,0,4)
D.(0,6,3)
Answer:C
Solution:
Solution:
Also,
c+λ
b
a=0
a
c+λ
a
b=0
λ=
a
c
a
b
=8
5
r=5 5 ^
i3^
i+3^
k8^
i^
j+2^
k
5
r=17 ^
i7^
j+^
k
5
r|2=1
25(289 +50)
25
r|2=339
( )
( )
( ) ( )
|
|
EquationofPlane:
2^
i+a^
j+4^
k (x2)^
i+ (ya)^
j+ (z4)^
k=0
2x +ay +4z =20 +a2
A20 +a2
2,0,0
B0,20 +a2
a,0
C0,0,20 +a2
4
Volumeoftetrahedron
=1
6
a
b
c
=1
6
a.
b×
c
1
6
20 +a2
220 +a2
a20 +a2
4=144
(20 +a2)3=144 ×48 ×a
a=2
⇒Equationofplaneis2x +2y +4z =24
Orx+y+2z =12
(3,0,4)NotliesonthePlane
x+y+2z =12
( ) [ ]
( )
( )
( )
[]
()
( ) ( ) ( )
Question36
Let
a,
b,
cbethreevectorssuchthat
a= 31,4
b=
c=2and
2
a×
b=3
c×
a.
Iftheanglebetween
band
cis
3,then
a×
c
a
b
2
isequalto_________.
[31-Jan-2023Shift2]
Answer:3
Solution:
-------------------------------------------------------------------------------------------------
Question37
Let
v=α^
i+2j 3k,
w=^
i+jk,and
ubeavectorsuchthat
u=α>0.Iftheminimumvalueofthescalartripleproduct
u
v
wis
α3401,and
u.^
i
2=m
nwheremandnarecoprimenaturalnumbers,
thenm +nisequalto_______.
[1-Feb-2023Shift1]
Answer:3501
Solution:
||| | | |
( ) ( )
( )
| | [ ]
| |
Sol. 2
a×
b=3
c×
a
a×2
b+3
c=0
a=λ 2
b+3
c
a|2=λ22
b+3
c|2
a|2=λ24
b|2+9
c|2+12
b
c
31 =31λ2λ= ±1
a= ± 2
b+3
c
b×
c|2=
b|2
c|2
b
c)2=3
4
a×
c
a
b
2
=3
( ) ( )
()
()
| |
| ( | | )
()
| | | (
( )
-------------------------------------------------------------------------------------------------
Question38
A(2,6,2), B(−4,0,λ), C(2,3, 1)andD(4,5,0),|λ| 5arethevertices
ofaquadrilateralABCD.Ifitsareais18squareunits,then5 6λis
equalto______.
[1-Feb-2023Shift1]
Answer:11
Solution:
Solution:
-------------------------------------------------------------------------------------------------
u
v
w=
u
v×
w
min . |u|
v×
w cos θ = α3401
cos θ = 1
|u| = α (Given)
v×
w= 3401
v×
w=
i j k
α 2 3
1 1
v×
w=i5αj 3αk
v×
w=
^
^
1+25α2+2= 3401
34α2=3400
α2=100
α=10
(as α >0 )
So
u=λ(i5αj 3αk)
u=^
λ2+25α2λ2+2λ
α2=λ2(1+25α2+2)
100 =λ2(1+34 ×100)
λ2=100
3401 =m
n
[ ] ( )
( | | )
| |
| |
||
A(2,6,2)B(−4,0,λ), C(2,3, 1)D(4,5,0)
Area =1
2
BD ×
AC =18
AC ×
BD =
i j k
033
8 5 λ
= ( +15)^
ij(−24) + k(−24)
AC ×
BD = ( +15)^
i+24j 24k
=( +15)2+ (24)2+ (24)2=36
=λ2+10λ +9=0
=λ= 1, 9
|λ| 5λ= 1
5 =56(−1) = 11
| |
[ ]
Question39
Let
a=5^
i^
j3^
kand
b=^
i+3^
j+5^
kbetwovectors.Thenwhichoneof
thefollowingstatementsisTRUE?
[1-Feb-2023Shift2]
Options:
A.Projectionof
aon
bis 17
35 andthedirectionofthep?
B.Projectionof
aon
bis 17
35 andthedirectionofthep?
C.Projectionof
aon
bis 17
35 andthedirectionoftheprojectionvectorisoppositetothe
directionof
b
D.Projectionof
aon
bis 13
35 andthedirectionoftheprojectionvectorisoppositetothe
directionof
b
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question40
Let
a=2^
i7^
j+5^
k,
b=^
i+^
kand
c=^
i+2^
j3^
kbethreegiven
vectors.If
risavectorsuchthat
r×
a=
c×
aand
r
b=0,then
ris
equalto:
[1-Feb-2023Shift2]
Options:
A. 11
72
B. 11
7
C. 11
52
D. 914
7
Answer:A
Solution:
| |
a=5^
i^
j3^
k
b=^
i3^
j+5^
k
a^
b=5315
35 = 13
35
-------------------------------------------------------------------------------------------------
Question41
LetthepositionvectorsofthepointsA,B,CandDbe
5^
i+5^
j+^
k,^
i+2^
j+3^
k, 2^
i+λ^
j+4^
kand^
i+5^
j+6^
k.Lettheset
S= { λ :thepointsA,B,CandDarecoplanar}.Then
λS(λ+2)2is
equalto:
[6-Apr-2023shift1]
Options:
A. 37
2
B.13
C.25
D.41
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question42
Let
a=2^
i+3^
j+4^
k,b=^
i2^
j2^
kand
c= ^
i+4^
j+3^
k.If
disavector
a=2 i 7^
j+5^
k
b=^
i+^
k
c=^
i+2^
j3^
k
r×
a=
c×
a
r
c×
a=0
r=
c+λ
a
r
b=0
c
b+λ
b
a=0
2+λ(7) = 0λ=2
7
r=
c+2
a
7=1
711 ^
i11 ^
k
r=112
7
( )
( )
| |
A,B,C,Darecoplanar
AB
AC
AD =0
43 3
7 λ 5 4
606
=0
6[ 12 (λ5)(3)] + 0[ ] + (6)[20 21]
6[ 12 +2+15 13λ] + (6)[− 1] = 0
12λ2+42λ 18 +222λ 6=0
2+20λ 24 =0λ2 +6=0
Now
λs
(λ+2)2=16 +25 =41
[][ ]
perpendiculartoboth
band
c,and
a
d=18,then
a×
d2isequalto:
[6-Apr-2023shift1]
Options:
A.760
B.640
C.720
D.680
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question43
Letthevectors
a,
b,
crepresentthreecoterminousedgesofa
parallelepipedofvolumeV.Thenthevolumeoftheparallelepiped,
whosecoterminousedgesarerepresentedby
a,
b+
cand
a+2
b+3
cis
equalto:
[6-Apr-2023shift2]
Options:
A.2V
B.6V
C.3V
D.V
Answer:D
Solution:
[ ]
d=λ
b×
c
For λ :
a
d=18 λ
a
b
c=18
λ
234
122
1 4 3
=18
λ(43+8) = 18 λ=2
d=2 2^
i^
j+2^
k
Hence
a×
d|2=a2d2
a
d2
=29 36 (18)2=18(58 18)
=18 40 =720
( )
[ ]
| |
( )
| ( )
-------------------------------------------------------------------------------------------------
Question44
Thesumofallvaluesofα,forwhichthepointswhosepositionvectors
are^
i2^
j+3k,2^
i3^
j+4k, (α+1)^
i+2kand9^
i+ (α8)^
j+6^
kare
coplanar,isequalto:
[6-Apr-2023shift2]
Options:
A.-2
B.2
C.6
D.4
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question45
Let
a=6^
i+9^
j+12^
k,
b=α^
i+11^
j2^
kand
cbevectorssuchthat
a×
c−=
a×
b.If
a.
c= 12,
c^
i2^
j+^
k=5,then
c.^
i+^
j+^
kis
equalto_______.
[8-Apr-2023shift1]
( ) ( )
v1=
a
b+
c
a+2
b+3
c
v1=
100
011
123
a
b
c
vl= (32)v
=v
Ans.Option4
[ ]
| | [ ]
A= (1, 2,3)
B= (2, 3,4)
C= (α+1,0,2)
D= (9,α8,6)
AB
AC
AD =0
11 1
α 2 1
8 α 6 3
=0
(6+α6) + 1( +8) + (α2 16) = 0
α2 8=0
α=4, 2
sumofallvaluesof α =2
Ans.option 2
[ ]
| |
Answer:11
Solution:
-------------------------------------------------------------------------------------------------
Question46
Letthevectors
u1=^
i+^
j+a^
k,
µ2=^
i+b^
j+^
kand
u3=c^
i+^
j+^
kbe
coplanar.Ifthevectors
v1= (a+b)^
i+cj +ck,
v2=a^
i+ (b+c)^
j+ak ^
kand
v3=b^
i+b^
j+ (c+a)^
karealsocoplanar,then6(a+b+c)isequalto
[8-Apr-2023shift2]
Options:
A.4
B.12
C.6
D.0
Answer:B
Solution:
a×
c=
a×5
a×
c
b=0
a|rl
c
b
a=λ
c
b
(6,9,12) = λ[xα,y11,z+2]
xα
2=y11
3=z+2
4
4y 44 =3z +6
4y 3z =50
6x +9y +12z = 12
2x +3y +4z = 4
(∵x2y +z=5)
2x 4y +2z =10
+
7y +2z = 14 .. . (2)
8y 6z =100
21y +6z = 42
29y =58
y=2,z= 14
x414 =5
x=23
c= (23,2, 14)
c (1,1,1) = 23 +214 =11
( )
( )
( )
-------------------------------------------------------------------------------------------------
Question47
AnarcPQofacirclesubtendsarightangleatitscentreO.Themid
pointofthearcPQisR.If
OP =
u,
OR =
vand
OQ =α
u+β
v,thenα,β2are
therootsoftheequation:
[10-Apr-2023shift1]
Options:
A.3x22x 1=0
B.3x2+2x 1=0
C.x2x2=0
D.x2+x2=0
Answer:C
Solution:
u1
u2
u3=0
1 1 a
1 b 1
c 1 1
=0
b1+c1+a(1bc) = 0
abc =a+b+c2
v1
v2
v3=0
a+b c c
a b +c a
b b c +a
=0
2a(ac bc c2) + 2c(a2+ab ac) = 0
2a2c+2 abc +2ac2+2a2c+2 abc 2ac2=0
4abc =0abc =0
a+b+c=26(a+b+c) = 12 Ans.
[ ] | |
[ ] | |
-------------------------------------------------------------------------------------------------
Question48
Let
a=2^
i+7^
j^
k,
b=3^
i+5^
kand
C=^
i+^
j+2^
k,Let
d-beavectorwhich
isperpendiculartoboth
a,and
b,and
c
d=12.The
^
i+^
j^
k
c×
d-isequalto
[10-Apr-2023shift2]
Options:
A.24
B.42
C.48
D.44
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question49
( ) ( )
Then
OR =
v=1
2
^
i+1
2
^
j
Now
OQ =α
u+β
v
^
j=α^
i+β1
2
^
i+1
2
^
j
β= 2,α+β
2=0α= 1
Nowequation
x2 (α+β2)x+αβ2=0
x2 (−1+2)x+ (−1)(2) = 0
x2x2=0
( )
a=2^
i+7^
j^
k
b=3^
i+5^
k
c=^
i^
j+2^
k
d=λ
a×
b=λ
^
i^
j^
k
2 7 1
3 0 5
d=λ 35^
i13^
j21^
k
λ(35 +13 42) = 12
λ=2
d=2 35^
i13^
j21^
k
^
i+^
j^
k
c×
d
=
111
112
70 26 42
=44
( ) | |
( )
( )
( ) ( )
| |
Foranyvector
a=a1
^
i+a2
^
j+a3
^
k,with10|ai| < 1,i=1,2,3,considerthe
followingstatements:
(A):max{|a1|, |a2|, |a3|}
a
(B):
a3 max{|a1|, |a2|, |a3|}
[11-Apr-2023shift1]
Options:
A.Only(B)istrue
B.Both(A)and(B)aretrue
C.Neither(A)nor(B)istrue
D.Only(A)istrue
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question50
Let
abeanon-zerovectorparalleltothelineofintersectionofthetwo
placesdescribedby^
i+^
j,^
i+^
kand^
i^
j,^
j^
k.Ifθistheanglebetween
thevector
aandthevector
b=2^
i2^
j+^
kand
a
b=6,thenorderedpair
θ,
a×
bisequalto:
[11-Apr-2023shift1]
Options:
A. π
3,6
B. π
4,36
C. π
3,36
| |
| |
( | | )
( )
( )
( )
Withoutlossofgenerality
Let|a1| |a2| |a3|
a|2=
a1
2+
a2
2+
a3
2 (a3)2
a|a3| = max{|a1|, |a2|, |a3|}
Aistrue
a|2= |a1|2+ |a2|2+ |a3|2 |a3|2+ |a3|2+ |a3|2
a|23|a3|2
a3
a3= 3 max{|a1|, |a2|, |a3|}
3 max{|a1|, |a2|, |a3|}
(2)istrue
|| | | | | |
||
|
|
|| | |
D. π
4,6
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question51
Iffourdistinctpointswithpositionvectors
a,
b,
cand
darecoplanar,
then
a
b
cisequalto
[11-Apr-2023shift2]
Options:
A.
d
c
a+
b
d
a+
c
d
b
B.
d
b
a+
a
c
d+
d
b
c
C.
a
d
b+
d
c
a+
d
b
c
D.
b
c
d+
d
a
c+
d
b
a
( )
[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
n1and
n2arenormalvectortotheplane^
i+^
j,^
i+^
kand^
i^
j,^
i^
krespectively
n1=
^
i^
j^
j
110
101
=^
i^
j^
k
n2=
^
i^
j^
j
110
1 0 1
=^
i+^
j+^
k
a=λ
n2×
n2
=λ
^
i^
j^
j
111
1 1 1
=λ2^
j+2^
k
a
b=λ 0 +4+2=6
λ=1
α= 2^
j+2^
k
cos θ =
a
b
|a||b|
cos θ =6
22×3=1
2
θ=π
4
Now
a
b|2+
a×
b|2=a|2b|2
36 +
a×b2=8×9=72
a×b|2=36
a×
b=6
| |
| |
| |
| | ( )
| |
| | | |
| |
|
| |
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question52
Let
a=^
i+2^
j+3^
kand
b=^
i+^
j^
k.If
cisavectorsuchthat
a
c=11,
b
a×
c=27and
b
c= 3
b,then
a×
c2isequalto
_______.
[11-Apr-2023shift2]
Answer:285
Solution:
-------------------------------------------------------------------------------------------------
Question53
Leta,b,cbethreedistinctrealnumbers,noneequaltoone.Ifthe
vectorsa^
i+^
j+^
k,^
i+b^
j+^
kand^
i+^
j+c^
karecoplanar,then
1
1a+1
1b+1
1cisequalto
[12-Apr-2023shift1]
( ) | | | |
a,
b,
c,
dcoplanar
a
b
c= ?
b
a,
c
b,
d
ccoplanar
b
a
c
b,
d
c=0
b
a
c
b×
d
c=0
b
a
c×
b
c×
a
a×
d=0
[bcd] [bca] [bad] [acd] = 0
a
b
c=
d
c
a+
b
d
a+
c
d
b
[ ]
[ ]
( ) ( ( ) ( ) )
( ) ( )
[ ] [ ][ ] [ ]
a=^
i+2^
j+3^
k,
b=^
i+^
j^
k
b
a×
c=27,
a
b=0
b×
a×
c= 3
a
Letθbeanglebetween
b,
a×
c
Then
b
a×
c sin θ =314
b
a×
c cos θ =27
sin θ =14
95
b×
a×
c=395
a×
c= 3× 95
( )
( )
| | | |
| | | |
| | | |
| |
Options:
A.1
B.2
C.-2
D.-1
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question54
Letλ Z,
a=λ^
i+^
j^
kand
b=3^
i^
j+2^
k.Let
cbeavectorsuchthat
a+
b+
c×
c=
0,
a
c= 17and
b
c= 20.Then
c×λ^
i+^
j+^
k
2is
equalto
[12-Apr-2023shift1]
Options:
A.62
B.53
C.49
D.46
Answer:D
Solution:
( ) | ( ) |
a 1 1
1 b 1
1 1 c
=0
C2C2C1,C3C3C1
a1a 1 a
1b10
1 0 c1
=0
a(b1)(c1) (1a)(c1) + (1a)(1b) = 0
a(1b)(1c) + (1a)(1c) + (1a)(1b) = 0
a
1a+a
1b+a
1c=0
1+1
1a+1
1b+1
1c=0
1
1a+1
1b+1
1c=1
| |
| |
a+
b+
c×
c=0
( )
-------------------------------------------------------------------------------------------------
Question55
Let
a=3^
i+^
j^
kand
c=2^
i3^
j+3^
k.If
bisavectorsuchthat
a=
b×
c
and
b
2=50,then|72−|
b+
c|2isequalto_______.
[13-Apr-2023shift1]
Answer:66
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question56
Let
a=^
i+4^
j+2^
k,
b=3^
i2^
j+7^
kand
c=2^
i^
j+4^
k.Ifavector
d
satisfies
d×
b=
c×
band
d
a=24,then
d
2isequalto-
[13-Apr-2023shift1]
| |
| |
a+
b×
c=0
c=α
a+
b=α(λ+3)^
i+α^
k
b
c= 20 (λ+3) + = 20
a
c= 17 αλ(λ+3) α= 17
α( +9+2) = 20
α(λ2+ 1) = 17
17( +11) = 20(λ2+ 1)
20λ2+ 207 =0
λ=3(λZ)
α= 1
c= 6^
i+^
k
v=
c×3^
i+^
j+^
k
=
^
i^
j^
k
6 0 1
311
=^
i+3^
j6^
k
v|2= (−1)2+32+62=46
( )
( )
( )
( )
| |
|
a= 11,
c= 22
a=
b×
c=
b
c sin θ
11 = 5022sin θ
sin θ =1
10
b+
c|2=
b|2+
c|2+2
b
c
=
b|2+
c|2+2
b
c cos θ
=50 +22 +2× 50 × 22×99
10
=72 +66
|72−|
b+
c|2 = 66
| | | |
| | | | | | | |
| | |
| | | | | |
Options:
A.323
B.423
C.413
D.313
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question57
Let
a=2,
b=3andtheanglebetweenthevectors
aand
bbe π
4.Then
a+2
b×2
a3
b
2isequalto
[13-Apr-2023shift2]
Options:
A.482
B.841
C.882
D.441
Answer:C
Solution:
| | | |
| ( ) ( ) |
d×
b=
c×
b
d
c×
b=0
d=
c+λ
b
Also
dä =24
c+λ
b
a=24
λ=24
a
c
b
a
=24 6
9=2
d=
c+2
b
=8^
i5^
j+18^
k
d|2=64 +25 +324 =413
( )
( )
( )
|
cos π
4=
a
b
a
b
1
2=
a
b
(2)(3)
a
b=32
Let
p=
a+2
b
( ) | | | |
-------------------------------------------------------------------------------------------------
Question58
LetSbethesetofall(λ,µ)forwhichthevectorsλ^
i^
j+^
k,^
i+2^
j+µ^
k
and3^
i4^
j+5^
k,whereλ µ=5,arecoplanar,then
(λ,µ) S80(λ 2 +µ2)is
equalto
[15-Apr-2023shift1]
Options:
A.2130
B.2210
C.2290
D.2370
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question59
q=2
a3
b
p|2=
a|2+4
b|2+4
a
b
=4+36 +122
=40 +122
q|2=4
a|2+9
b|212
a
b
=16 +81 362
=97 362
p
q=2
a|26
b|2+
a
b
=854 +32
= 46 +32
p×
q=
p
q2
p
q2
= (40 +122(97 362)) (3246)2
= (3016 2762) (2134 2762)
=882
| | | ( )
| | | ( )
||
| | ( | | | | ) ( )
λ11
1 2 µ
345
=0&λµ=5
λ(10 +) + (5) + (−10) = 0
(µ+5)( +10) + 5 10 =0
µ= 15;λ=54
µ= 3;λ=2
Hence
2+µ2)
(λ,µ) S80(λ
=80 250
16 +13
=1250 +1040
=2290
| |
( )
LetABCDbeaquadrilateral.IfEandFarethemidpointsofthe
diagonalsACandBDrespectivelyand
AB
BC +
AD
DC =k
FE,thenk
isequalto
[15-Apr-2023shift1]
Options:
A.4
B.2
C.-2
D.-4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question60
Let
aand
bbetwounitvectorssuchthat
a+
b+2
a×
b=2.If
θ (0,π)istheanglebetween
aand
b,thenamongthestatements:
(S1) : 2
a×
b=
a
b
(S2):Theprojectionof
aon
a+
bis 1
2
[24-Jun-2022-Shift-2]
Options:
A.Only(S1)istrue.
B.Only(S2)istrue.
( ) ( )
| ( ) ( ) |
| | | |
( )
AB
BC +
AB
DC =k
FE
b
a
c
b+
d
a
c
d=k
FE
2
b+
d2
a
c=k
FE
2 2
f2 2
e=k
FE
4
f
e=k
FE
4
FE =k
FE
k= 4
( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( )
C.Both(S1)and(S2)aretrue.
D.Both(S1)and(S2)arefalse.
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question61
Let
a=a1
i+a2
j+a3widehat k ai>0,i=1,2,3beavectorwhichmakes
equalangleswiththecoordinateaxesOX,OYandOZ.Also,letthe
projectionof
aonthevector3
i+4
jbe7.Let
bbeavectorobtainedby
rotating
awith90.If
a,
bandx-axisarecoplanar,thenprojectionofa
vector
bon3
i+4
jisequalto:
[25-Jun-2022-Shift-1]
Options:
A.7
B.2
C.2
D.7
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question62
Letθbetheanglebetweenthevectors
aand
b,where
a=4,
b=,3and
θπ
4,π
3.Then
a
b×
a+
b
2+4
a
b
2isequalto__
[25-Jun-2022-Shift-1]
Answer:576
Solution:
| |
( ) | ( ) ( ) | ( )
-------------------------------------------------------------------------------------------------
Question63
Let
b=
i+
j+λ
k,λR.If
aisavectorsuchthat
a×
b=13
i
j4
kand
a
b+21 =0,then
b
a
k
j+
b+
a
i
kisequalto____
[25-Jun-2022-Shift-2]
Answer:14
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question64
If
a
b=1,
b
c=2and
c
a=3,thenthevalueof
a×
b×
c,
b×
c×
a,
c×
b×
ais:
[26-Jun-2022-Shift-1]
Options:
A.0
B.
6a
b×
c
( ) ( ) ( ) ( )
[ ( ) ( ) ( ) ]
( )
Let
a=x
i=y
j+z
k
So,
i
j
k
x y z
11λ
=
i(λy z) +
j(zλx) +
k(xy)
λy z=13,zλx = 1,xy= 4
andx+y+λz = 21
⇒Clearly,λ=3,x= 2,y=2andz= 7
So,
b
a=3
i
j+10
k
and
b+
a=
i+3
j4
k
b
a
k
j+
b+
a
i
k=11 +3=14
| |
( ) ( ) ( ) ( )
C.12
c
a×
b
D.12
b
c×
a
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question65
Let
a=
i+
j+2
k,
b=2
i3
j+
kand
c=
i
j+
kbethreegivenvectors.Let
vbeavectorintheplaneof
aand
bwhoseprojectionon
cis 2
3.If
v
j=7,then
v
i+
kisequalto:
[26-Jun-2022-Shift-2]
Options:
A.6
B.7
C.8
D.9
Answer:D
Solution:
( )
( )
( )
-------------------------------------------------------------------------------------------------
Question66
Let
a=
i+
j
kand
c=2
i3
j+2
k.Thenthenumberofvectors
bsuch
that
b×
c=
aand
b {1,2, ......, 10}is:
[27-Jun-2022-Shift-1]
Options:
A.0
B.1
C.2
D.3
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question67
| |
a=
i+
j
k
c=2
i3
j+2
k
Now,
b×
c=
a
c
(b×
c) =
c
a
c
a=0
i+
j
k2
i3
j+2
k=0
=232=0
⇒−3=0(Notpossible)
⇒Nopossiblevalueof
bispossible.
( ) ( )
Let
aand
bbethevectorsalongthediagonalsofaparallelogramhaving
area22.Lettheanglebetween
aand
bbeacute,
a=1,and
a
b=
a×
b.If
c=22
a×
b2
b,thenananglebetween
band
cis
[27-Jun-2022-Shift-2]
Options:
A. π
4
B.π
4
C.
6
D.
4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question68
If
a=2
i+
j+3
k,
b=3
i+3
j+
kand
c=c1
i+c2
j+c3
karecoplanarvectors
and
a
c=5,
b
c,then122(c1+c2+c3)isequalto
[28-Jun-2022-Shift-1]
| |
| | | | ( )
aand
bbethevectorsalongthediagonalsofaparallelogramhavingarea22.
1
2
a×
b = 22
a
b sin θ =42
bsin θ =42.... (i)
and
a
b=
a×
b
a
b cos θ =
a
b sin θ
tan θ =1
θ=π
4
By(i)
|b| = 8
Now
c=22
(a×
b2
b
c
b= 2
b|2= 128
and
c
c=8
a×
b|2+4
b|2
| c|2=8.32 +4.64
c=162
From(ii)and(iii)
|c|
bcos α = 128
cos α =1
2
α=
4
| | | |
| |
| | | | | | | |
)
|
| |
| |
| |
Answer:150
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question69
Let
a=α
i+2
j
kand
b= 2
i+α
j+
k,whereα R.Iftheareaofthe
parallelogramwhoseadjacentsidesarerepresentedbythevectors
aand
bis 15(α2+4),thenthevalueof2
a2+
a
b
b
2isequalto:
[28-Jun-2022-Shift-2]
Options:
A.10
B.7
C.9
D.14
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
| | ( ) | |
2C1+C2+3C3=5....... (i)
3C1+3C2+C3=0
a
b
c=
213
331
C1C2C3
=2(3C3C2) 1(3C3C1) + 3(3C23C1)
=3C3+7C28C1
8C17C23C3=0...... (iii)
C1=10
122,C2=85
122 ,C3=225
122
So122(C1+C2+C3) = 150
[ ] | |
a=α
i+2
j
kand
b= 2
i+α
j+
k
a×
b=
i
j
k
α 2 1
2α 1
= (2+α)
i (α2)
j+ (α2+4)
k
Now
a×
b=15(α2+4)
(2+α)2+ (α2)2+ (α2+4)2=15(α2+4)
α4236 =0
α= ±3
Now,2
a|2+
a
b
b|2=2.14 14 =14
| |
| |
|( ) |
Question70
Let
abeavectorwhichisperpendiculartothevector3
i+1
2
j+2
k.If
a×2
i+
k=2
i13
j4
k,thentheprojectionofthevector
aonthe
vector2
i+2
j+
kis:
[28-Jun-2022-Shift-2]
Options:
A. 1
3
B.1
C. 5
3
D. 7
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question71
Let
a=α
i+3
j
k,
b=3
iβ
j+4
kand
c=
i+2
j2
kwhereα,βR,be
threevectors.Iftheprojectionof
aon
cis 10
3and
b×
c= 6
i+10
j+7
k,
thenthevalueofα +βisequalto:
[29-Jun-2022-Shift-1]
Options:
A.3
B.4
C.5
( )
Let
a=a1
i+a2
j+a3
k
and
a3
i1
2
j+2
k=03a1+a2
2+2a3=0.....(i)
and
a×2
i+
k=2
i13
j4
k
a2
i+ (2a3a1)
j2a2
k=2
i13
j4
k
a2=2.....(ii)
anda12a3=13.....(iii)
Fromeq.(i)and(iii):a1=3anda3= 5
a=3
i+2
j5
k
∴projectionof
aon2
i+2
j+
k=6+45
3=5
3
( )
( )
D.6
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question72
LetA,B,Cbethreepointswhosepositionvectorsrespectivelyare
a=
i+4
j+3
k
b=2
i+α
j+4
k,αR
c=3
i2
j+5
k
Ifαisthesmallestpositiveintegerforwhich
a,
b,
carenoncollinear,
thenthelengthofthemedian,inABC,throughAis:
[29-Jun-2022-Shift-2]
Options:
A. 82
2
B. 62
2
C. 69
2
D. 66
2
Answer:A
Solution:
a=α
i+3
j
k
b=3
iβ
j+4
k
c=
i+2
j2
k
Projectionof
aon
cis
a
c
|b|
=10
3
α+6+2
12+22+ (−2)2=α+8
3=10
3
α=2
b×
c= 6
i+10
j+7
k
i
j
k
3β4
122
= ( 8)
i+10
j+ (6+β)
k= 6
i+10
j+7
k
8= 6&6+β=7
β=1
α+β=2+1=3
| |
Solution:
-------------------------------------------------------------------------------------------------
Question73
Let
a=
i2
j+3
k,
b=
i+
j+
kand
cbeavectorsuchthat
a+
b×
c=
0
and
b
c=5.Thenthevalueof3
c
aisequalto____
[29-Jun-2022-Shift-2]
Answer:0
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question74
Let
a,
bbeunitvectors.If
cbeavectorsuchthattheanglebetween
aand
cis π
12,and
b=
c+2
c×
a,then 6
c|2isequalto:
[24-Jun-2022-Shift-1]
Options:
A.6(3 3)
B.3 + 3
C.6(3+ 3)
( )
( )
( ) |
AB
ACif 1
2=α4
6=1
2α=1
a,
b,
carenon-collinearforα=2(smallestpositiveinteger)
Mid-pointofBC =M5
2,0,9
2
AM =9
4+16 +9
4=82
2
|
( )
a+
b×
c=0
a×
b+
b|2
c5
b=0
Itgives
c=1
310
i+3
j+2
k
so3
a
c=10
Butitdoesnotsatisfy
a+
b×
c=0.
Thisquestionhasdataerror.
Alternate(Explanation):
Accordingtogiven
a&
b
a
b=12+3=2...(i)
butgivenequation
a=
b×
c
a
b
a
b=0
whichcontradicts.
|
( )
()
D.6(√3+1)
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question75
Iftheshortestdistancebetweenthelines
r=
i+3
k+λ
ia
j
and
r=
j+2
k+µ
i
j+
kis 2
3,thentheintegralvalueofais
equalto
[24-Jun-2022-Shift-1]
Answer:2
Solution:
( ) ( )
( ) ( )
Question76
LetABCbeatrianglesuchthat
BC =
a,
CA =
b,
AB =
c,a = 62,overrightarrow
b = 23and
b
c=12.
Considerthestatements:
(S1) :
a×
b+
c×
b
c = 6(221)
(S2) : ACB =cos12
3
Then
[25-Jul-2022-Shift-1]
Options:
A.both(S1)and(S2)aretrue
B.only(S1)istrue
C.only(S2)istrue
D.both(S1)and(S2)arefalse
Answer:D
Solution:
( ) ( ) | |
()
a+
b+
c=0
thena+
c=
b
then
a+
c×
b=
b×b
( )
-------------------------------------------------------------------------------------------------
Question77
Let
a=
i
j+2
kandlet
bbeavectorsuchthat
a×
b=2
i
kand
a
b=3.
Thentheprojectionof
bonthevector
a
bis:
[25-Jul-2022-Shift-2]
Options:
A. 2
21
B.2 3
7
C. 2
3
7
3
D. 2
3
Answer:A
Solution:
a×
b+
c×
b=0.. . (i)
For(S1):
a×
b+
c×
b
c=6(221)
a+
c×
b
c=6(221)
c=6122(notpossible)
For(S2):from(i)
b+
c=
a
b
b+
c
b=
a
b
12 +12 = 6223cos(π ACB)
cos(∠ACB) = 2
3
ACB =cos12
3
S(2)iscorrect.
| | | |
|( ) | | |
| |
a=
i
j+2
k
a×
b=2
i
k
a
b=3
a×
b2+
a
b|2=
a|2
|b|2
5+9=6
b|2
| b|2=7
3
a
b=
a2+ .
|b|22
a
b=7
3
projectionof
bon
a
b=
b
a
b
a
b
=
b
a
b|2
a
b
=
37
3
7
3
=2
21
| | | |
|
| | | |
( )
| |
|
Question78
Let
a=α
i+
j
kand
b=2
i+
jα
k,α>0.Iftheprojectionof
a×
bonthe
vector
i+2
j2
kis30,thenαisequalto:
[26-Jul-2022-Shift-1]
Options:
A. 15
2
B.8
C. 13
2
D.7
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question79
Let
a=α
i+
j+β
kand
b=3
i5
j+4
kbetwovectors,suchthat
a×
b=
i+9
i+12
k.Thentheprojectionof
b2
aon
b+
aisequalto
[27-Jul-2022-Shift-1]
Options:
A.2
B. 39
5
C.9
Given:
a= (α,1, 1)and
b= (2,1, α)
c=
a×
b=
i
j
k
α 1 1
2 1 α
= (−α+1)
i+ (α22)
j+ (α2)
k
Projectionof
con
d=
i+2
j2
k
. =
c
d
|d|=30 Given
= α14+2 +4
1+4+4=30
Onsolvingα=13
2(Rejectedas.α>0)andα=7
| |
| | }
| |
D. 46
5
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question80
Let
a=2
i
j+5
kand
b=α
i+β
j+2
k.If
a×
b×
i
k=23
2,then
b×2
j
isequalto
[27-Jul-2022-Shift-1]
Options:
A.4
B.5
C.21
D.17
Answer:B
Solution:
Solution:
(( ) ) | |
a=α
i+
j+β
k,
b=3
i5
j+4
k
a×
b=
i+9
j+12
k
i
j
k
α 1 β
354
=
i+9
j+12
k
4+ = 1β= 1
3=12 α= 3
b2
a=3
i5
j+4
k23
i+
j
k
b2
a=9
i7
j+6
k
b+
a=3
i5
j+4
k+ 3
i+
j
k
b+
a= 4
j+3
k
Projectionof
b2
aon
b+
ais =
b2
a
b+
a
b+
a
=28 +18
5=46
5
| |
( )
( ) ( )
( ) ( )
| |
Given,
a=2
i
j+5
kand
b=α
i+β
j+2
k
Also,
a×
b×i
k=23
2
a
i
b
b
ia
k=23
2
2
bα
a
k=23
2
( ( ) )
( ( ) ( ) )
( )
-------------------------------------------------------------------------------------------------
Question81
Let
a,
b,
cbethreenon-coplanarvectorssuchthat
a×
b=4
c,
b×
c=9
a
and
c×
a=α
b,α>0
If
a+
b+
c=1
36,thenαisequalto________.
[27-Jul-2022-Shift-2]
Answer:36
Solution:
-------------------------------------------------------------------------------------------------
Question82
Letthevectors
a=(1+t)
i+(1t)
j+
k,
b=(1t)
i+ (1+t)
j+2
kand
ct
it
j+
k,tRbesuchthatfor
α,β,γR,α
a+β
b+γ
c=
0α=β=γ=0.Then,thesetofallvaluesoft
| | | | | |
22 =23
2α=3
2
Now,
b×2j =α
i+β
j+2
k×2
j
=
k+04
i
=2+16
=43
2
2+16 =5
| | | ( ) |
| |
( )
Given,
a×
b=4
c..... (i)
b×
c=9
a..... (ii)
c×
a=α
b... .(iii)
Takingdotproductswithc,
a,
bweget
a
b=
b
c=
c
a=0
Hence,
(i)
a
b=4.
c∣..... (iv)
(ii)⇒
|b|
c=9
a....(v)
(iii)⇒
c
a=α
|b|...(vi)
Multiplying(iv),(v)and(vi)
a
b
c = 36α..... (vii)
Dividing(vii)by(iv)⇒
c|2=
c=3α....(viii)
Dividing(vii)by(v)⇒
a|2=
a=2α
Dividing(viii)by(vi)⇒overrightarrow
b2=36
b = 6
Now,asgiven,3α+2α+6=1
36 α=43
36
| | | |
| | | |
| |
|| | |
|
| | |
| |
is:
[28-Jul-2022-Shift-1]
Options:
A.anon-emptyfiniteset
B.equaltoN
C.equaltoR {0}
D.equaltoR.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question83
Letavector
a,hasmagnitude9.Letavector
bbesuchthatforevery
(x,y) R×R {(0,0)},thevector x
a+y
bisperpendiculartothe
vector 6y
a18x
b.Thenthevalueof
a×
bisequalto:
[28-Jul-2022-Shift-1]
Options:
A.93
B.273
C.9
D.81
Answer:B
Solution:
Solution:
( )
( ) | |
Clearly
a,
b,
carenon-coplanar
1+t 1 t1
1t 1 +t2
tt1
0
(1+t)(1+t+2t) (1t)(1t2t) + 1(t2ttt2) 0
(3t2+4t +1) (1t)(13t) 2t 0
(3t2+4t +1) (3t24t +1) 2t 0
t0
| |
xa +
yb 6
ya 18x
b=0
6xy
a|218xy
b|2+ (6y218x2)
a
b=0
Asgivenequationisidentity
Coefficientofx2= coefficientofy2= coefficientofxy =0
( ) ( )
(|| )
-------------------------------------------------------------------------------------------------
Question84
LetSbethesetofalla Rforwhichtheanglebetweenthevectors
u=a(logeb)
i6
j+3
kand
v= (logeb)
i+2
j+2a(logeb)
k, (b>1)isacute.
ThenSisequalto:
[28-Jul-2022-Shift-2]
Options:
A. , 4
3
B.Φ
C. 4
3,0
D. 12
7,
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question85
Let
a=3
i+
jand
b=
i+2
j+
k.Let
cbeavectorsatisfying
a×
b×
c=
b+
c.If
band
carenon-parallel,thenthevalueofλis:
[29-Jul-2022-Shift-1]
Options:
A.5
B.5
( )
( )
( )
()
a|2=.3
b|2
b = 33
anda.
b=0
a×
b=
a
b sinθ
=9.33.1 =273
|
| | | | | |
u=a(logeb)
i6
j+3
k
v= (logeb)
i+2
j+2a(logeb)
k
Foracuteangle
u
v>0
a(logeb)212 +6a(logeb) > 0
b>1
Letlogeb=tt>0asb>1
at2+6at 12 >0t>0
aφ
C.1
D.1
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question86
Let
aand
bbetwounitvectorssuchthattheanglebetweenthemis π
4.If
θistheanglebetweenthevectors
a+
band
a+2
b+2
a×
b,then
thevalueof164cos2θisequalto:
[29-Jul-2022-Shift-1]
Options:
A.90 +272
B.45 +182
C.90 +32
D.54 +902
Answer:A
Solution:
Solution:
( ) ( ( ) )
a=3
i+
j&
b=
i+2
j+
k
a×
(b×
c) =
a
c)b
(a
b
c=
b+
λc
If
b&
carenon-parallel
then
a
c=1&
a
b= λ
but
a
b=5λ= 5
( )
a
b=1
2and
a×
b=1
2
a+
b
a+2
b+2
a×
b
a+
b
a+2
b+2
a×
b
=cos θ
cos θ =1+3
a
b+2
a+
b
a+2
b+2
a×
b
a+
b
2
=2+ 2
a+2
b+2
a×
b
2
=1+4+4
a×
b|2+4
a
b
=5+41
2+4
2=7+22
So,cos2θ=
3+3
2
2
(2+ 2)(7+22)=92(52+3)
164
164cos2θ=90 +272
| |
( ) ( ( ) )
| | | ( ) |
| | | ( ) |
| |
| ( ) | |
( )
-------------------------------------------------------------------------------------------------
Question87
If(2,3,9), (5,2,1), (1,λ,8)and(λ,2,3)arecoplanar,thentheproduct
ofallpossiblevaluesofλis:
[29-Jul-2022-Shift-2]
Options:
A. 21
2
B. 59
8
C. 57
8
D. 95
8
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question88
Let
a,
b,
cbethreecoplanarconcurrentvectorssuchthatangles
betweenanytwoofthemissame.Iftheproductoftheirmagnitudesis
14and
a×
b
b×
c+
b×
c
c×
a+
c×
a
a×
b=168,then
a+
b+
cisequalto:
[29-Jul-2022-Shift-2]
Options:
A.10
B.14
C.16
D.18
( ) ( ) ( ) ( ) ( ) ( )
| | | | | |
A(2,3,9), B(5,2,1), C(1,λ,8)andD(λ,2,3)arecoplanar.
────────
ABACAD =0
318
1 λ 31
λ216
=0
⇒[6(λ3) 1] 8(1 (λ3)(λ2)) + ( 6+ (λ2) = 0
3(− +17) 8(−λ2+ 5) + (λ+4) = 8
257λ +95 =0
λ1λ2=95
8
[ ]
| |
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question89
Let
aand
bbetwovectorssuchthat
a+
b
2=
a|2+2
b|2,
a
b=3and
a×
b
2=75.Then
a2isequalto_______.
[29-Jul-2022-Shift-2]
Answer:14
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question90
If(1,5,35), (7,5,5), (1,λ,7)and(,1,2)arecoplanar,thenthesum
ofallpossiblevaluesofλis
[26Feb2021Shift1]
| | | |
| | | |
a
b
c=14
a
b=
b
c=
c
a=θ=
3
So,
a
b= 1
2ab,
b
c= 1
2bc,
a
c. = 1
2ac
(let)
a×
b
b×
c=
a
b
b
c
a
c
b
b
=1
4ab2c+1
2ab2c=3
4ab2c
Similarly
b×
c
c×
a
=3
4abc2
c×
a
a×
b
=3
4a2bc168
=3
4abc(a+b+c)
So,(a+b+c) = 16
| | | | | |
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )
a+ ˙b|2=
a|2+2 b|2
or
a2+
b|2+2
a
b=
a|2+2
b|2
b|2=6
Now
a×
b2=
a|2
b|2
a
b2
75 =
a|269
a|2=14
| | |
| | | | |
|
| | | | ( )
|
|
Options:
A. 39
5
B.39
5
C. 44
5
D.44
5
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question91
Ifaandbareperpendicular,thena × (a× (a× (a×b)))isequalto
[26Feb2021Shift1]
Options:
A.0
B. 1
2a|4b
C.a ×b
D.|a|4b
Answer:D
Solution:
|
LetP(1,5,35), Q(7,5,5), R(1,λ,7), S(,1,2)
GivenP,Q,R,Sarecoplanar.Then,PQ,PR,PSlieonthesameplane.
PQ = (71)
i+ (55)
j+ (535)
k=6
i30
k
PR = (11)
i+ (λ5)
j+ (735)
k= (λ5)
j28
k
PS = ( 1)
i+ (15)
j+ (235)
k= ( 1)
i4
j33
k
∵PQ,PRandPSlieonsameplane,then
6 0 30
0λ528
1433
=0
Expandalongfirstrow,
6[−33(λ5) 112] + 30[( 1)(λ5)] = 0
6(−33λ +53) + 30(211λ +5) = 0
60λ2528λ +468 =0
10λ288λ +78 =0
244λ +39 =0...(i)
PossiblevalueofλarerootsofEq.(i).
Then,sumofallpossiblevaluesofλ= SumofrootsofEq.(i)
=−(44)
5=44
5
[ ax2+bx++c=0,sumofroots = ba}
| |
-------------------------------------------------------------------------------------------------
Question92
Letthreevectors
a,
band
cbesuchthat
ciscoplanarwith
aand
b,
a
c=7and
bisperpendicularto
c,where
a=
i+
j+
kand
b=2
i+
k,
thenthevalueof2
a+
b+
c|2is
24Feb2021Shift1
Answer:75
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question93
Ifvectorsa1=x
i
j+
kanda2=
i+
yj+z
karecollinear,thenapossible
unitvectorparalleltothevectorx
i+
j+z
kis
[26Feb2021Shift2]
Options:
A. 1
2
j+
k
|
( )
a× [a× {a× (a×b)}]
=a× (a× [(ab)a (aa)b])
[U sing,a× (b×c) = (acb (ab)c]
=a× [a× ((ab)a | a|2b)]
=a× [(a× (ab)a) | a|2(a×b)]
=a× [0 | a|2(a×b)]
=−|a|2[a× (a×b)]
=−|a|2[(ab)a (aa)b]
= (ab)a|a|2+ | a|4b
=0+ | a|4b
= | a|4b
Let
c=λ
b×
a×
b
=λ
b
b
a
b
a
b
=λ 5
i+
j+
k+2
i+
k
=λ3
i+5
j+6
k
c
a=7 + + =7
λ=1
2
23
21+2
i+5
2+1
j+ (3+1+1)
k
2
=21
4+49
4+25 =25 +50 =75
( ( ) )
( ( ) ( ) )
( ( ) )
( )
|( ) ( ) |
( )
B. 1
2
i
j
C. 1
3
i+
j
k
D. 1
3
i
j+
k
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question94
Leta =
i+α
j+3
kandb =3
iα
j+
k.Iftheareaoftheparallelogram
whoseadjacentsidesarerepresentedbythevectorsaandbis83
squareunits,thena bisequalto.............
[25Feb2021Shift2]
Answer:2
Solution:
Solution:
( )
( )
( )
Given,a1=x
i
j+
kanda2=
i+y
j+z
karecollinear,then x
1=1
y=1
z=λ(Say)
Thisgivesx=λ,y= 1
λ,z=1
λ
Then,unitvectorparalleltovectorx
i+y
j+zkwillbe
= ± (λ)
i1
λ
j+1
λ
k
(λ)2+1
λ
2+1
λ
2
= ± λ2
i
j+
kλ
λλ4+2
= ± λ2
i
j+
k
λ4+2
Take,λ=1= ±
i
j+
k
3
(( ) ( ) )
( ) ( )
()
()
()
Areaofparallelogram= | a×b|
=
i+α
j+3
k×3
iα
j+
k
(64)(3) = 16α2+64 +16α2(given,area =83)
=
i+α
j+3
k×3
iα
j+
k
(64)(3) = 16α2+64 +16α2(given,area =83)
(squaringonbothsides)
α2=4
Now,a.b = 3α2+3
=6α2=64=2
| ( ) ( ) |
| ( ) ( ) |
-------------------------------------------------------------------------------------------------
Question95
Leta =
i+2
j
k,b=
i
jandc =
i
j
kbethreegivenvectors.Ifrisa
vectorsuchthatr ×a=c×aandr b=0,thenr aisequalto..........
[25Feb2021Shift1]
Answer:12
Solution:
-------------------------------------------------------------------------------------------------
Question96
Avectorahascomponents3pand1withrespecttorectangular
cartesiansystem.Thissystemisrotatedthroughacertainangleabout
theorigininthecounterclockwisesense.If,withrespecttonew
system,ahascomponentsp +1and10,thenavalueofpisequalto
[18Mar2021Shift1]
Options:
A.1
B.5
4
C. 4
5
D.1
Answer:D
b=
i
j
c=
i
j
k
r×a=c×a
r×ac×a=0
(rc) × a=0
rc=λa
r=λa +c
rb=λa b+cb(takingdotw)
0=λa b+cb
λ
i+2
j
k
i
j+
i
j
k
i
j=0
λ(12) + 2=0
λ=2
r=2a +c
ra=2a a+ca[takingdotwitha]
=2|a|2+ac
=2(1+4+1) + (12+1)
ra=12
( ) ( ) ( ) ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question97
Letavectorα
i+β
jbeobtainedbyrotatingthevector3
i+
jbyanangle
45abouttheoriginincounterclockwisedirectioninthefirstquadrant.
Thentheareaoftrianglehavingvertices(α,β), (0,β)and(0,0)isequal
to
[16Mar2021Shift1]
Options:
A. 1
2
B.1
C. 1
2
D.22
Answer:A
Solution:
Solution:
Aftercounterclockwise(oranti-clockwise)rotation,thelengthofthevectoraremainsconstant.
i.e.|a|atoldposition= | a|atnewposition
(3p)2+ (1)2= (p+1)2+ (√10)2
9p2+1=p2+1+2p +10
8p22p 10 =04p2p5=0
(p+1)(4p 5) = 0
p=5
4, 1
LetOAbe√3
i+
jandOBbeα
i+β
j.
As,wecannoticeinOA,1
3=tan 30.So,itmakesanangleof30withtheX-axis.
Now,whenOAisrotatedfurtherby45anticlockwise,theresultantvectorOBmakesanangleof75withtheX-axis.
| ( )
-------------------------------------------------------------------------------------------------
Question98
Let
xbeavectorintheplanecontainingvectors
a=2
i
j+
kand
b=
i+2
j
k.Ifthevector
xisperpendicularto 3
i+2
j
kandits
projectionon
ais 176
2,thenthevalueof
x2isequalto
[17Mar2021Shift2]
Answer:486
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question99
( )
| |
So,OB= | OA cos 75
i+sin 75
j
Let△OBCbetherequiredtrianglewhoseareawehavetodetermine.
Areaof△OBC = (1/2) × (Base) × (Height)
=1/2×β×α
=1
2(2 sin 75)(2 cos 75) = 2 sin 75cos 75
=sin 150=sin 30
=1/2
Hence,theareais1/2sq.unit.
| ( )
Letx=λa +µb,whereλandµarescalars.
x=λ 2
i
j+
k+µ
i+2
j
k
x=
i( +µ) +
j( λ) +
k(λµ)
Since,xisperpendicularto 3
i+2
j
k.
Then,x3
i+2
j
k=0
+ =0
Also,givenprojectionofxonais 176
2.....(i)
xa
|a|=176
2
2( +µ) + (λ) + (λµ) = 51
µ=51...(ii)
FromEqs.(i)and(ii),
λ=8,µ= 3
x=13
i14
j+11
k
| x= (13)2+ (−14)2+ (11)2
| x| = (13)2+ (−14)2+ (11)2=486
( ) ( )
( )
( )
|
Letaandbbetwonon-zerovectorsperpendiculartoeachotherand
|a|= |b|.If|a×b|= |a|,thentheanglebetweenthevectors
[a+b+ (a×b)]andaisequalto
[18Mar2021Shift2]
Options:
A.sin11
3
B.cos11
3
C.cos11
2
D.sin11
6
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question100
Leta =2
i3
j+4
kandb =7
i+
j6
k.Ifr ×a=r×b,r
i+2
j+
k= 3,
then.r 2
i3
j+
kisequalto
[17Mar2021Shift1]
Options:
A.12
B.8
C.13
D.10
( )
( )
( )
( )
( )
( )
Given,ab...(i)
|a|= |b|...(ii)
and|a×b|= |a|
| a||b|sin 90= | a| [fromEq.(i)]
| b| = 1= | a|...(iii) [fromEq.(ii)]
FromEq.(iii),wecansaythat
a×baremutuallyperpendicularunitvectors.
Let a=
iandb=
j
a×b=
k
Now, [a+b+ (a×b)] =
i+
j+
k
cos θ =
i+
j+
k
i
31=1
3
θ=cos11
3
( )
()
( )
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question101
Leta =
i+2
j3
kandb =2
i3
j+5
k.Ifr ×a=b×r,rα
i+2
j+
k=3
andr. 2
i+5
ja
k= 1,αR,thenthevalueofα+ | r|2isequalto
[16Mar2021Shift2]
Options:
A.9
B.15
C.13
D.11
Answer:B
Solution:
Solution:
( )
( )
a=2
i3
j+4
k
b=7
i+
j6
k
Ifr×a=r×b
r=λ(ab) = λ 5
i+4
j10k
Now,r
i+2
j+
k= 3
λ 5
i+4
j+10
k
i+2
j+
k= 3
λ(5+8+10) = 3
λ= +1
r= 5
i4
j+10
k
So,r2
i3
j+
k
= 5
i4
j+10
k2
i3
j+
k
= 10 +12 +10
=12
( )
( )
( ) ( )
( )
( ) ( )
Given,a=
i+2
j3
k
andb=2
i3
j+5
k
Ifr×a=b×r,rα
i+2
j+
k=3
r2
i+5
jα
k= 1
r×a=b×r
(r×a) = (r×b) (r×a) + (r×b) = 0
r× (a+b) = 0r=λ(a+b)
r=λ(1+2)
i+ (23)
j+ (−3+5)
k
r=λ 3
i
j+2
k
rα
i+2
j+
k=3
( )
( )
( )
( )
[ ]
( )
( )
( ) ( )
-------------------------------------------------------------------------------------------------
Question102
Let
cbeavectorperpendiculartothevectors
a=
i+
j
kand
b=
i+2
j+
kIf
c
i+
j+3
k=8thenthevalueof
c
a×
bisequalto
..........
[16Mar2021Shift2]
Answer:28
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question103
( ) ( )
λ 3
i
j+2
kα
i+2
j+
k=3
λ( 2+2) = 3
αλ =1
r2
i+5
jα
k= 1
λ 3
i
j+2
k2
i+5
jα
k= 1
λ(65) = 1λ(1) = 1
λ2αλ = 1λ2= 1
λ=1
So,α=1
r=3
i
j+2
k
| r|2=9+1+4=14
α+ | r|2=1+14 =15
( ) ( )
( )
( ) ( )
( )
Since,cisperpendiculartoaandb.
So,c=λ(a×b)
a=
i+
j
k
b=
i+2
j+
k
Now,a×b=
i
j
k
111
1 2 1
= (1+2)
i (1+1)
j+ (21)
k
=3
i2
j+
k
c=λ 3
i2
j+
k
Now,c⋅
i+
j+3
k=8
λ 3
i2
j+
k
i+
j+3
k=8
=8
λ=2
So,c=2 3
i2
j+
k
So,c (a×b) = 2 3
i2
j+
k3
i2
j+
k
=2(9+4+1)
=28
| |
( )
( )
( ) ( )
( )
( ) ( )
Ifa =α
j+β
j+3
k,b= β
iα
j
kandc =
i2
j
ksuchthata b=1and
b.c= 3,then 1
3[(a×b) c]isequalto
[17Mar2021Shift1]
Answer:2
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question104
LetObetheorigin.LetOP =x
i+y
j
kand
OQ =
i+2
j+3x
k,x,yR,x>0,besuchthat|PQ| = 20andthevector
OPisperpendiculartoOQ.IfOR =3
i+2
j7
k,z R,iscoplanarwith
OPandOQ,thenthevalueofx2+y2+z2isequalto
[17Mar2021Shift2]
Options:
A.7
B.9
C.2
a= α,β,3⟩
b= ⟨−β, α, 1⟩
c= 1, 2, 1⟩
ab=1
αβ αβ 3=1
αβ = 2
bc= 3
β+ +1= 3
β =4
β22
β=4
β2+4= β2 +4=0
(β2)2=0β=2
αβ = 2α2= 2
α= 1
Hence, 1
3[(a×b) c]
a= ⟨−1,2,3⟩
b= ⟨−2,1, 1⟩
c= 1, 2, 1⟩
(a×b) =
i
j
k
12 3
211
= 5
i7
j+3
k
(a×b) c= 5
i7
j+3
k
i2
j
k
= 5+14 3=6
1
3[(a×b) c] = 1
3×6=2
( )
| |
( ) ( )
D.1
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question105
If
a+3
bisperpendicularto 7
a5
band
a4
bisperpendicularto
7
a2
b,thentheanglebetweenaand
b(indegrees)is________.
[25Jul2021Shift2]
Answer:60
Solution:
( ) ( ) ( )
( )
Given,OP =x
i+y
j
k
OQ =
i+2
j+3x
k
OR =3
i+z
j7
k
and | PQ | = 20
Now,|PQ|= |OQ OP |=|OP OQ|
= (x+1)
i+ (y2)
j (1+3x)
k
PQ |2= (√20)2=20
(x+1)2+ (y2)2+ (1+3x)2=20
(x+1)2+ (2x 2)2+ (1+3x)2=20
OPOQ
OP OQ =0
⇒−x+2y 3x =0
y=2x
x2+1+2x +4x2+48x +1+9x2+6x =20
14x2+6=20 14x2=14
x2=1x= ±1butxmustbepositiveasinquestionconditionsi.e.x>0.
x= 1 (Rejected)
Hence,x=1
y=2x =2×1=2
Now,OP,OQandORarecoplanar.
[OP OQ OR] = 0
x y 1
12 3x
3 z 7
=0
1 2 1
12 3
3 z 7
=0
1(−14 3z) 2(79) 1(−z6) = 0z= 2
x2+y2+z2=1+4+4=9
[ ]
| | | |
a+3
b7
a5
b
a+3
b.7
a5
b=0
7
a215
b2+16
a.
b=0......(1)
a4
b.7
a2
b=0
( ) ( )
( ) ( )
| | | |
( ) ( )
-------------------------------------------------------------------------------------------------
Question106
Let
a,
b,
cbethreemutuallyperpendicularvectorsofthesame
magnitudeandequallyinclinedatanangleθ,withthevector
a+
b+
c.
Then36cos22θisequalto_______.
[20Jul2021Shift1]
Answer:4
Solution:
-------------------------------------------------------------------------------------------------
Question107
Forp >0,avector
v2=2^
i+ (p+1)^
jisobtainedbyrotatingthevector
v1= 3p^
i+^
jbyanangleθaboutoriginincounterclockwisedirection.
Iftan θ =(α32)
(43+3),thenthevalueofαisequalto_________.
[20Jul2021Shift2]
Answer:6
Solution:
7
a2+8
b230
a.
b=0......(2)
from(1)&(2)
a=
b
cos θ =
b
2
a
θ=60°
| | | |
| | | |
| |
| |
a+
b+
c2=
a2+
b2+
c2+2
a.
b+
a.
c+
b.
c=3
a+
b+
c= 3
a
a+
b+
c=
a+
a+
b+
ccos θ
1= 3 cos θ
cos 2 θ = 1
3
36cos2 =4
| | | | | | | | ( )
| |
( ) | | |
-------------------------------------------------------------------------------------------------
Question108
InatriangleABC,if
BC =3,
CA =5and
BA =7,thentheprojectionof
thevector
BAon
BCisequalto
[20Jul2021Shift2]
Options:
A.19
2
B.13
2
C.11
2
D.15
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
| | | | | |
Projectionof
BAon
BCisequalto
=B
A cos ABC
=772+3252
2×7×3=11
2
| |
| |
Question109
Let
p=2^
i+3^
j+^
kand
q=^
i+2^
j+^
kbetwovectors.
Ifavector
r=α^
i+β^
j+γ^
kisperpendiculartoeachofthevectors
p+
qand
p
q,and
r= 3,then|α|+ | β|+|γ|isequalto_______.
[25Jul2021Shift1]
Answer:3
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question110
If
a=2,
b=5and
a×
b=8,then
a.
bisequalto:
[25Jul2021Shift2]
Options:
A.6
B.4
C.3
D.5
Answer:A
Solution:
( )
( ) ( ) | |
| | | | | | | |
p=2^
i+3^
j+^
k(Given)
q=^
i+2^
j+^
k
Now
p+
q×
p
q=
^
i^
j^
k
351
110
= 2^
i2^
j2^
k
r= ±3
p+
q×
p
q
p+
q×
p
q
±32^
i2^
j2^
k
22+22+22
r= ± ^
i^
j^
k
Accordingtoquestion
r=α^
i+β^
j+γ^
k
So|α| = 1, | β| = 1, | γ| = 1
| α|+|β|+|γ| = 3
( ) ( ) | |
( ( ) ( ) )
| ( ) ( ) |
( )
( )
-------------------------------------------------------------------------------------------------
Question111
Let
a=^
i+^
j+2^
kand
b= ^
i+2^
j+3^
k.Thenthevectorproduct
a+
b×
a×
a
b×
b×
bisequalto:
[27Jul2021Shift1]
Options:
A.5 34^
i5^
j+3^
k
B.7 34^
i5^
j+3^
k
C.7 30^
i5^
j+7^
k
D.5 30^
i5^
j+7^
k
Answer:B
Solution:
Solution:
( ) ( ( ( ( ) ) ) )
( )
( )
( )
( )
a=2,
b=5
a×
b=
a
b sin θ = ±8
sin θ = ±4
5
a.bv =
a
b cos θ
=10 . ±3
5= ±6
a.
b=6
| | | |
| | | | | |
| | | |
( )
| |
a=^
i+^
j+2^
k
b= ^
i+2^
j+3^
k.
a+
b=3^
j+5^
k;
a.
b= 1+2+6=7
a×
a
b×
b×
b
a×
a×
b
b×
b×
b
a×
a×
b0×
b
a×
a×
b×
b
a.
b
a
a.
a
b×
b
a.
b
a×
b
a.
a
b×
b
a.
b
a×
b
a×
b=
^
i^
j^
k
1 1 2
12 3
= ^
i5^
j+3^
k
7^
i5^
j+3^
k
a+
b×7^
i5^
j+3^
k
7 0^
i+3^
j+5^
k× ^
i5^
j+3^
k
^
i^
j^
k
0 3 5
153
( ( ( ( ) ) ) )
( ( ( ) ) )
( ( ) )
( ( ) )
( ( ) ( ) )
( ) ( ) ( )
( ) ( )
| |
( )
( ) ( ( ) )
( ) ( )
| |
( )
-------------------------------------------------------------------------------------------------
Question112
Let
a=^
i+^
j+^
k,
band
c=^
j^
kbethreevectorssuchthat
a×
b=
cand
a.
b=1.Ifthelengthofprojectionvectorofthevector
bonthevector
a×
cisl ,thenthevalueof3l 2isequalto_______.
[27Jul2021Shift1]
Answer:2
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question113
Let
a,
band
cbethreevectorssuchthat
a=
b×
b×
c.Ifmagnitudesof
thevectors
a,
band
care2,1and2respectivelyandtheanglebetween
band
cisθ 0 <θ<π
2,thenthevalueof1 +tan θisequalto:
[27Jul2021Shift2]
Options:
A.3+1
B.2
C.1
D.3+1
3
Answer:B
( )
( )
34^
i (5)^
j+3^
k
34^
i5^
j+3^
k
7 34^
i5^
j+3^
k
( )
( )
a×
b=
c
TakeDotwith
c
a×
b
c=
c|2=2
Projectionof
bor
a×
c=l
b.
a×
c
a×
c
=l
l=2
6l2=4
6
3l2=2
( ) |
|( ) |
| |
Solution:
-------------------------------------------------------------------------------------------------
Question114
Letthevectors(2+a+b)^
i+ (a+2b +c)^
j (b+c)^
k,(1+b)^
i+2b b^
kand
(2+b)^
i+2b^
j+ (1b)^
k a,b,c, Rbeco-planar.Thenwhichofthe
followingistrue?
[25Jul2021Shift1]
Options:
A.2b =a+c
B.3c =a+b
C.a =b+2c
D.2a =b+c
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
a=
b.
c
b
b.
b
c
=1.2 cos θ
b
c
a=2 cos θ
b
c
a2= (2 cos θ)2+222.2 cos θ
b.
c
2=4cos2θ+44 cos θ .2 cos θ
⇒−2= 4cos2θ
cos2θ=1
2
sec2θ=2
tan2θ=1
θ=π
4
1+tan θ =2.
( ) ( )
| |
Ifthevectorsareco-planar,
a+b+2 a +2b +cbc
b+12b b
b+22b 1b
=0
NowR3R3R2,R1R1R2
So
a+1 a +cc
b+12b b
1 0 1
=0
= (a+1)2b (a+c)(2b +1) c(−2b)
=2ab +2b 2ab a2bc c+2bc
=2b ac=0
| |
| |
Question115
Letthreevectors
a,
band
cbesuchthat
a×
b=
c,
b×
c=
aand
a=2.
Thenwhichoneofthefollowingisnottrue?
[22Jul2021Shift2]
Options:
A.
a×
b+
c×
b
c=
0
B.Projectionof
aon
b×
cis2
C.
a
b c +
c
a
b=8
D. 3
a+
b2
c
2=51
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question116
Letavector
abecoplanarwithvectors
b=2^
i+^
j+^
kand
c=^
i^
j+^
k.If
a
isperpendicularto
d=3^
i+2^
j+6^
k,and
a= 10.Thenapossiblevalue
of
a
b
c+
a
b
d+
a
c
dequalto:
[22Jul2021Shift2]
Options:
A.42
| |
( ( ) ( ) )
( )
[ ] [ ]
| |
| |
[ ] [ ] [ ]
(1)
a×
b+
c×
b
c=
0
=
a
b×
c+
c×
b = 2
a×
b×
c
= 2
a×
a
0
(2)Projectionof
aon
b×
c
=
a.
b×
c
b×
c
=
a.
a
a
=
a=2
(3)
a
b c +
c
a
b = 2
a
b c =2
a.
b×
c
=2
a.
a=2
a|2=8
(4)
a×
b=
cand
b×
c=
a
a,
b,
caremutuallyperpvectors.
a×
b=
c
a
b=
c⇒
b=
c
2
Also,
b×
c=a
b
c=2
c=2&
b=1
a+
b2
c2=3
a+
b2
c. 3
a+
b2
c
=9
a|2+
b|2+4
c|2
= (9×4) + 1+ (4×4)
=36 +1+16 =53
( ( ) ( ) )
( ) ( ( ) )
( )
( )
( )
| | | | | |
[ ] [ ] [ ] ( )
|
| | | | | | | | | | | || |
| | | | | | | | | | | |
| | ( ) ( )
|| |
B.40
C.29
D.38
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question117
Let
a=2^
i+^
j2^
kand
b=^
i+^
j.If
cisavectorsuchthat
a.
c=
c,
c
a=22andtheanglebetween
a×
band
cisπ
6,thenthe
valueof
a×
b×
cis
[20Jul2021Shift1]
Options:
A.2
3
B.4
C.3
D.3
2
Answer:D
Solution:
Solution:
| | | | ( )
| ( ) |
a=λ
b+µ
c=^
i( +µ) + ^
j(λµ) + ^
k(λ+µ)
a.
d=0=3( +µ) + 2(λµ) + 6(λ+µ)
14λ + =0µ=
a= (0)^
i^
j+ (−λ)^
k
a= 10 λ= 10λ=1
λ=1or−1
a
b
c=0
a
b
c+
a
b
d+
a
c
d =
a
b+
c
d
=
0 λ
302
326
=(12) + λ(6) = 42λ = 42
| | | | | |
[ ]
[ ] [ ] [ ] [ ]
| |
a=3=a;
a.
c=c
Now
c
a=22
c2+a22
c.
a=8
c2+92(c) = 8
c22c +1=0c=1=
c
| |
| |
| |
-------------------------------------------------------------------------------------------------
Question118
Letaandbbetwovectorssuchthat|2a+3b|=|3a+b|andtheangle
betweenaandbis60°.If1
8aisaunitvector,then|b|isequalto
[31Aug2021Shift1]
Options:
A.4
B.6
C.5
D.8
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question119
Leta,bandcbethreevectorsmutuallyperpendiculartoeachotherand
havesamemagnitude.Ifavectorrsatisfies.
a×{(r-b)×a}+b×{(r-c)×b}+c×{(r-a)×c}=0,thenrisequel
to
[31Aug2021Shift2]
Options:
A.1
3(a+b+c)
Also,
a×
b=2^
i2^
j+^
k
Given
a×
b=
a×
b
c sin π
6
= (3)(1)(12)
=32
( ) | | | |
|2a+3b|=|3a+b|
| 2a +3b |2= | 3a +b|2
4|a|2+.9b |2+12a .b = 9|a|2+ | b|2+6a .b
5|a|26a .b8|b|2=0
a
8isaunitvector.
So,|a|=8
And,
5.64 6.8|b|1
28|b|2=0
| b|2+3|b| 40 =0
(|b| + 8)(|b| 5) = 0
|b|=5
As,|b|=−8Notpossible.
( )
B.1
3(2a+b-c)
C.1
2(a+b+c)
D.1
2(a+b+2c)
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question120
Ahallhasasquarefloorofdimension10m ×10m(seethefigure)and
verticalwalls.IftheGPHbetweenthediagonalsAGandBHiscos11
5,
thentheheightofthehall(inm)is
[26Aug2021Shift2]
Options:
A.5
B.210
C.53
D.52
Answer:D
Solution:
a×[(r-b)×a]+b×[(r-c)×b]+c×[(r-a)×c]=0
⇒a.a(r-b)-(a.(r-b))a+b.b(r-c)-(b.(r-c))b+c.c(r-a)-(c.(r-a))c=0
| a|2(rb) (r.a)a+ | b|2(rc) (r.b)b+ | c|2(ra) (r.c)c=0[∵ab,caremutuallyperpendicular;∴a.b=
b.c=c.a=0]
| a|2[3r (a+b+c)] [(r.a)a+ (r.b)b+ (r.c)c] = 0[∵|a|=|b|=|c|]
| a|2[3r (a+b+c) r] = 0
∴3r-(a+b+c)-r=0
r=a+b+c
2
Solution:
-------------------------------------------------------------------------------------------------
Question121
Iftheprojectionofthevector^
i+2^
j+^
konthesumofthetwovectors
2^
i+4^
j5^
kandλ^
i+2^
j+3^
kis1,thenλisequalto
[26Aug2021Shift2]
Answer:5
Solution:
-------------------------------------------------------------------------------------------------
Question122
Leta =^
i+5^
j+α^
k,b=^
i+3^
j+β^
kandc = ^
i+2^
j3^
kbethreevectors
suchthat,|b×c| = 53andaisperpendiculartob.Then,thegreatest
amongstthevaluesof|a|2is
[27Aug2021Shift1]
LetA= (0,0,0)
B= (10,0,0)
G= (10,10,h)
H= (0,10,h)
AG =10^
i+10^
j+h^
k
BH = 10^
i+10^
j+h^
k
Since,AG .BH = | AG||BH |cos θ
(−100 +100 +h2) = h2+200 .h2+200 .1
5
5h2=h2+200
h2=50
h=52
( )
Leta = ^
i+2^
j+^
k
b = 2^
i+4^
j5^
k
c= λ^
i+2^
j+3^
k
Now,accordingtothequestions,
a. (b+c)
|b+c|=1
a.b+a.c= | b+c|
5+ (−λ+4+3) = (2λ)^
i+6^
j2^
k
(12 λ)2= (2λ)2+36 +4
λ2+144 24λ =λ2 +4+40
⇒λ=5
| |
Answer:90
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question123
If 50
Σ
r=1tan11
2r2=pthenthevalueoftan pis
[26Aug2021Shift2]
Options:
A.101
102
B.50
51
C.100
D.51
50
Answer:B
Solution:
Given,a=^
i+5^
j+α^
k
b=^
i+3^
j+β^
k
andc= ^
i+2^
j3^
k
∵a⊥b
⇒a.b=0
^
i+5^
j+α^
k.^
i+3^
j+β^
k=0
1+15 +αβ =0
orαβ = 16...(i)
Now,b×c=
^
i^
j^
k
1 3 β
123
=^
i(−9) ^
j(−3+β) + ^
k(2+3)
b×c=^
i(−9) + ^
j(3β) + 5^
k
Given,|b×c| = 53
| b×c|2=75
⇒(9)2+ (3β)2+25 =75
β2+ +8=0
β= 2, 4
FromEq.(i),weget
Forβ= 2,α=8
Forβ= 4,α=4
Formaximumvalueof|a|2,α=8
| α|2=1+25 +64 =90
( ) ( )
| |
-------------------------------------------------------------------------------------------------
Question124
Leta =^
i+^
j+^
kandb =^
j^
k.Ifcisavectorsuchthata ×c=band
a.c=3,thena . (b×c)isequalto
[26Aug2021Shift1]
Options:
A.2
B.6
C.6
D.2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question125
Given, 50
Σ
r=1
tan11
2r2=p
Now,Σtan12
1+4r21
=Σtan1(2r +1) (2r 1)
1+ (2r +1)(2r 1)
=Σ[tan1(2r +1) tan1(2r 1)]
= (tan13tan11) + (tan15tan13) + ........ + tan1101 tan199
=tan1(101) tan11
=tan1101 1
1+101 =tan150
51
tan150
51 =p
tan p =50
51
( )
[ ]
( ) ( )
Given,a×c=b
a× (a×c) = a×b
(a.c)a (a.a)c=a×b
Wehave,a= (1,1,1), b= (0,1, 1), a.c=3
a×b=
^
i^
j^
k
1 1 1
0 1 1
= 2^
i+^
j+^
k
So,3a 3c = 2^
i+^
j+^
k
3^
i+3^
j+3^
k3c = 2^
i+^
j+^
k
3c =5^
i+2^
j+2^
k
Now,a. (b×c) = 1
3
1 1 1
011
5 2 2
=1
3(455) = 2
| |
( )
( ) ( )
( )
( ) | |
LetP1,P2, ........., P15be15pointsonacircle.Thenumberofdistinct
trianglesformedbypointsP^
i
,P^
j
andP^
ksuchthat^
i+^
j+^
k15is
[1Sep2021Shift2]
Options:
A.12
B.419
C.443
D.455
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question126
Avector
a=α^
i+2^
j+β^
k(α,βR)liesintheplaneofthevectors,
b=^
i+^
jand
c=^
i^
j+4^
k.If
abisectstheanglebetween
band
c,then:
[Jan.7,2020(I)]
Options:
A.
a.^
i+3=0
B.
a.^
i+1=0
C.
a.^
k+2=0
D.
a.^
k+4=0
Answer:C
^
i+^
j+^
k=15
where,^
i=1,^
j+^
k=14
⇒ ^
j=2,^
k=12 ,^
j=3,^
k=11 ,^
j=4,^
k=10,
^
j=5,^
k=9^
j=6,^
k=8...5ways
^
i=2,^
j+^
k=13
⇒ ^
j=3,^
k=10 , ..., ^
j=6,^
k=7...4ways
^
i=3,^
j+^
k=12
⇒ ^
j=4,^
k=8,^
j=5,^
k=7...2ways
^
i=4,^
j+^
k=11
^
j=5,^
k=6...1way
∴Total=12ways
Then,numberofpossibletrianglesusingvertices
P^
i,P^
i,P^
ksuchthat^
i+^
j+^
k15is
15C312 =455 12 =443
( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question127
Let
a,
band
cbethreeunitvectorssuch
that
a+
b+
c=
0if
λ=
a.
b+
b.
c+
c.
aand
d=
a×
b+
b×
c+
c×
a,then
theorderedpair, λ,
disequalto:
[Jan.7,2020(II)]
Options:
A. 3
2,3
a×
c
B. 3
2,3
c×
b
C. 3
2,3
b×
c
D. 3
2,3
a×
b
Answer:D
( )
( )
( )
( )
( )
Anglebisectorbetween
band
ccanbe
a=λ^
b+^
cor
a=µ^
b^
c
If
a=λ
^
i+^
j
2+
^
i^
j+4^
k
32
=λ
323^
i+3^
j+^
i^
j+4^
k
=λ
324^
i+2^
j+4^
k
Comparewith
a=α^
i+2^
j+β^
k
32=2λ=32
a=4^
i+2^
j+4^
k
Notsatisfyanyoption
Nowconsidera=µ
^
i+^
j
2
^
i^
j+4^
k
32
a=µ
323^
i+3^
j^
i+^
j4^
k
=µ
322^
i+4^
j4^
k
Comparewith
a=α^
i+2^
j+β^
k
32=2µ=32
2
a=^
i+2^
j2^
k
a.
k+2=^
i+2^
j2^
k.^
k+2
= 2+2=0
( ) ( )
( )
[ ]
[ ]
( )
( )
( )
( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question128
Letthevolumeofaparallelopipedwhosecoterminousedgesaregiven
by
u=^
i+^
j+λ^
k,
v=^
i+^
j+3^
kand
w=2^
i+^
j+^
kbe1cu.unit.Ifθbethe
anglebetweentheedges
uand
w,thencos θcanbe:
[Jan.8,2020(I)]
Options:
A. 7
66
B. 7
63
C.5
7
D. 5
33
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question129
Iet
a=i2j +kand
b=ij+khetwovectors.If
cisavectorsuchthat
a+
b+
c2=0
3+2
a.
b+
b.
c+
c.
a = 0
a.
b+
b.
c+
c.
a = 3
2λ=3
2
d=
a×
b+
b×
a
b+
a
b×ac=
a
b
=
a×
b+
a×
b+
a×
b
d=3
a×
b
| |
( )
( )
( ) ( ) [ ]
( )
Itisgiventhat
u=^
i+^
j+λ^
k,
v=^
i+^
j+3^
kand
w=2^
i+^
j+^
k
Volumeofd=
u.
v.
w
⇒±1=
1 1 λ
113
211
⇒−λ+3= ±1λ=2orλ=4
Forλ=2
cos θ =2+1+2
66=5
6
Forλ=4
cos θ =2+1+4
618 =7
63
[ ]
| |
b×
c=
b×
aand
c.
a=0,then
c.
bisequalto:
[Jan.8,2020(II)]
Options:
A.3
2
B.1
2
C.1
2
D.-1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question130
Theprojectionofthelinesegmentjoiningthepoints(1,-1,3)and
(2,-4,11)onthelinejoiningthepoints(-1,2,3)and(3,-2,10)is_______.
[NAJan.9,2020(I)]
Answer:8
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question131
a×
b×
c=
a×
b×
a
a.
b
c=
a.
a
b
a.
b
a
⇒−4
c=6^
i^
j+^
k4^
i2^
j^
k
⇒−4
c=2^
i2^
j+2^
k
c=1
2
^
i+^
j+^
k
b.
c= 1
2
( ) ( )
( ) ( ) ( )
( ) ( )
( )
LetP(1, 1,3), Q(2, 4,11), R(−1,2,3)andS(3, 2,10)
Then,PQ =^
i3^
j+8^
k
ProjectionofPQonRS
=PQ .RS
|RS|=4+12 +56
(4)2+ (4)2+ (7)2=8
Let
a,
band
cbethreevectorssuchthat
a= 3,
b=5,
b.
c=10and
theanglebetween
band
cisπ
3.If
bisperpendiculartothevector
b×
c,then
a×
b×
cisequalto_______.
[NAJan.9,2020(II)]
Answer:30
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question132
Letthevectors
a,
b,
cbesuchthat
a=2,
b=4and
c=4.Ifthe
projectionof
bon
aisequaltotheprojectionof
con
aand
bis
perpendicularto
c,thenthevalueof
a+
b
cis________.
[NASep.05,2020(II)]
Answer:6
Solution:
-------------------------------------------------------------------------------------------------
| | | |
| ( ) |
| | | | | |
| |
b.
c=10
b
c cos π
3=10
5.
c.1
2=10
c=4
Since,isperpendiculartothevector
b×
c,then
a.
b×
c=0
Now,
a×
b×
c=
a
b×
c sin π
2
= 3×
b
c sin π
3×1
Hence,
a×
b×
c=30
| | | | ( )
| | | |
( )
| ( ) | | | || ( )
| | | |
| ( ) |
∵Projectionof
bon
a= Projectionof
con
a
a.
b=
a.
c
Given,
b.
c=0
a+
b
c|2=
a|2+
b|2+
c|2+2
a.
b2
b.
c2
a.
c
=4+16 +16 =36
a+
b
c|2=6
| | | |
|
Question133
Ifthevectors,
p= (a+1)^
i+a^
j+a^
k,
q=a^
i+ (a+1)^
j+a^
kand
r=a^
i+a^
j+ (a+1)^
k(aR)arecoplanarand3
p.
q2λ
r×
q|2=0,
thenthevalueofλis_______.
[NAJan.9,2020(I)]
Answer:1
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question134
Leta,b,cRbesuchthata2+b2+c2=1.
Ifa cos θ b cos θ +
3=c cos θ +
3,whereθ =π
9thentheangle
betweenthevectorsa^
i+b^
j+c^
kandb^
i+c^
j+a^
kis:
[Sep.03,2020(II)]
Options:
A.π
2
( ) |
( ) ( )
a+1 a a
a a +1 a
a a a +1
=0
3a +1=0a= 1
3
Thegivenvectors
p=2
3
^
i1
3
^
j1
3
^
k = 1
32^
i^
j^
k
q=1
3^
i+2^
j^
k
r=1
3^
i^
j+2^
k
Now,
p.
q=1
9(−22+1) = 1
3
r×
q=1
9
^
i^
j^
k
1 2 1
11 2
=1
9(i(41) j(−21) + k(1+2))
=1
9(3i +3j +3k) = i+j+k
3
r×
q=1
33
r×
q|2 = 1
3
3
p.
q2λ
r×
q|2=0
3.1
9λ.1
3=0λ=1
| |
( )
( )
( )
| |
| | |
( ) |
B.
3
C.π
9
D.0
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question135
Letthepositionvectorsofpoints'A'and'B'be^
i+^
j+^
kand2^
i+^
j+3^
k,
respectively.Apoint'P'dividesthelinesegmentABinternallyinthe
ratiolambda :1(λ>0).IfOistheregionand
OB .
OP 3
OA ×
OP |2=6,
thenλisequalto______.
[NASep.02,2020(II)]
Answer:0.8
Solution:
|
a cos θ =b cos θ +
3 = c cos θ +
3=k
a=k
cos θ,b=k
cos θ +
3
,c=k
cos θ +
3
ab +bc +ca =k2
cos θ +
3+cos θ +cos θ +
3
cos θ +
3.cos θ .cos θ +
3
=k2cos θ +2 cos(θ+π) . cos π
3
cos θ .cos θ +
3.cos θ +
3
=k2
cos θ +2 cos θ 1
2
cos θ .cos θ +
3.cos θ +
3
=0
cos ϕ = a^
i+b^
j+c^
k.b^
i+c^
j+a^
k
a2+b2+c2.b2+c2+a2
=ab +bc +ca =0
ϕ=π
2
( ) ( )
( ) ( )
[ ( ) ( ) ]
( ) ( )
[( )
( ) ( ) ]
[( ) ( ) ]
( ) ( )
LetpositionvectorofAandBbe
aand
brespectively.
∴PositionvectorofPis
OP =λ
b+
a
λ+1
-------------------------------------------------------------------------------------------------
Question136
If
aand
bareunitvectors,thenthegreatestvalueof3
a+
b+
a
bis
_______.
[NASep.06,2020(I)]
Answer:4
Solution:
-------------------------------------------------------------------------------------------------
Question137
If
xand
ybetwonon-zerovectorssuchthat
x+
y=
xand2
x+λ
yis
perpendicularto
y,thenthevalueofλis_______.
[NASep.06,2020(II)]
| | | |
| | | |
Given
OB .
OP 3
OA ×
OP |2=6
b.λ
b+
a
λ+1−3
a×λ
b+
a
λ+1|2=6
a.
b+λ
b|2
λ+1− 2
(λ+1)2
a×
b2=6
a×
b=2
i
j
kand
a.
b=6
6+14λ
λ+118λ2
(λ+1)2=6
6+
λ+118λ2
(λ+1)2=6
Let λ
λ+1=t
18t28t =02t(9t 4) = 0
t=0,4
9
λ
λ+1=4
9λ=4
5=0.8
|
( ) |
|| | ( )
Letanglebetween
aand
bbeθ.
a+
b= 1+1+2 cos θ = 2 cos θ
2 | a
| = b=1
Similarly,
a
b=2 sin θ
2
So,√3
a+
b+
a
b = 23 cos θ
2+sin θ
2
∵Maximumvalueof(a cos θ +b sin θ) = a2+b2
∴Maximumvalue = 2(√3)2+ (1)2=4
| | | | [ | | ]
| | | |
| | | | [ | | | | ]
Answer:1
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question138
Let
a,
band
cbethreeunitvectorssuchthat
a
b
2+
a
c|2=8.Then
a+2
b
2+
a+2
c|2isequalto_______.
[NASep.02,2020(I)]
Answer:2
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question139
Ifthevolumeofaparallelopiped,whosecoterminusedgesaregivenby
thevectors
a=^
i+^
j+n^
k,
b=2^
i+4^
jn^
kand
c=^
i+n^
j+3^
k(n0),is
158cu.units,then:
[Sep.05,2020(I)]
Options:
A.
a.
c=17
B.
b.
c=10
| | |
| | |
x+
y=
x
Squaringbothsidesweget
x2+2
x.
y+
y|2=
x|2
2
x.
y+
y.
y=0........(i)
Also2
x+λ
yand
yareperpendicular
2
x.
y+λ
y.
y=0........(ii)
Comparing(i)and(ii),λ=1
| | | |
| | | |
a=
b=
c=1
a
b2+
a
c|2=8
a.
b+
a.
c= 2
Now,
a+2
b2+
a+2
c|2
=2==
a|2+4
b|2+4
c|2+4
a.
b+
a.
c=2
| | | | | |
| | |
| | |
|| | ( )
C.n =7
D.n =9
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question140
Letx0bethepointoflocalmaximaoff (x) =
a.
b×
c,where
a=x^
i2^
j+3^
k,
b= 2^
i+x^
j^
kand
c=7^
i2^
j+x^
kThenthevalueof
a.
b+
b.
c+
c.
aatx =x0is:
[Sep.04,2020(I)]
Options:
A.-4
B.-30
C.14
D.-22
Answer:D
Solution:
Solution:
( )
Weknowthatthevolumeofparallelopiped
=
a
b
c
1 1 n
24n
1 n 3
=158
(12 +n2) 1(6+n)+n(2n 4) = 158
3n25n 152 =0
3n224n +19n 152 =0
3n(n8) + 19(n8) = 0
n=8orn=19
3
n=8(n0)
a=^
i+^
j+8^
k,
b=2^
i+4^
j8^
kand
c=^
i+8^
j+3^
k
a.
c=1+8+24 =33
b.
c=2+32 24 =10
[ ]
| |
Itisgiventhat
f(x) =
a.
b×
c=
^
i^
j^
k
x23
2x1
72x
= x327x +26
( ) | |
-------------------------------------------------------------------------------------------------
Question141
If
a=2^
i+^
j+2^
k,thenthevalueof ^
i×
a×^
i
2+^
j×
a×^
j|2
+^
k×
a×^
k|2isequalto________.
[NASep.04,2020(II)]
Answer:18
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question142
Thesumofthedistinctrealvaluesofmu,forwhichthevectors,
µ^
i+^
j+^
k,^
i+µ^
j+^
k,^
i+^
j+µ^
k,areco-planar,is:
[Jan.12,2019(I)]
Options:
A.-1
B.0
C.1
D.2
Answer:A
Solution:
| ( ) | | ( )
| ( )
f(x) = x327x +26
f′(x) = 3x227
Forcriticalpointf′(x) = 0
3x227 =0⇒x= 3,3
Thelocalmaximaoff(x)is,x0= 3.
Thenra .b+b.c+c.a
= 2x 2x 314 2x x+7x+4+3x =3x 13
So,valueatx=x0, = a.b+b.c+c.a = 3x 13
=3× (−3) 13 = 22
^
i×a×^
i=^
i.^
i a ^
i.a^
i = ^
j+2^
k
Similarly,^
j×a×^
j=2^
i+2^
k
^
k×^
a×^
k=2^
i+^
j
^
j+2^
k|2+2^
i+2^
k|2+2^
i+^
j|2 = 5+8+5=18
( ) ( ) ( )
( )
( )
| | |
Solution:
-------------------------------------------------------------------------------------------------
Question143
Let
a=^
i+2^
j+4^
k,
b=^
i+λ^
j+4^
kand
c=2^
i+4^
j+ (λ21)^
kbecoplanar
vectors.Thenthenon-zerovector
a×
cis:
[Jan.11,2019(I)]
Options:
A.10^
i5^
j
B.14^
i5^
j
C.14^
i+5^
j
D.10^
i+5^
j
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question144
Let3^
i+^
j,^
i+ 3^
jandβ^
i+ (1β)^
jrespectivelybethepositionvectors
ofthepointsA,BandCwithrespecttotheoriginO.IfthedistanceofC
∵Threevectors µ^
i+^
j+^
k, ==^
i+µ^
j+^
kand ^
i+^
j+µ^
karecopalnar.
µ 1 1
1 µ 1
1 1 µ
=0
µ(µ21) + 1µ+1µ=0
(1µ)[2µ(µ+1)] = 0
(1µ)[µ2+µ2] = 0
µ=1, 2
Therefore,sumofallrealvalues = 12= 1
( ) ( ) ( )
| |
a,
band
carecoplanar
1 2 4
1 λ 4
24(λ21)
=0
λ3λ16 +2(8λ2+1)+4(4) = 0
λ32 +18 =0
i.e.,(λ2)(λ3)(λ+3) = 0
Forλ=2,
c=2^
i+4^
j+3^
k
a×
c=
^
i^
j^
k
124
243
= 10^
i+5^
j
Forλ=3or−3,
c=2
a
a×c=0(Rejected)
| |
| |
fromthebisectoroftheacuteanglebetweenOAandOBis 3
2,thenthe
sumofallpossiblevaluesofbetais:
[Jan.11,2019(II)]
Options:
A.4
B.3
C.2
D.1
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question145
Letα = (λ2)
a+
band
β= ( 2)
a+3
bbetwogivenvectorswhere
vectors
aand
barenon-collinear.Thevalueofλforwhichvectors
αand
βarecollinear,is:
[Jan.10,2019(II)]
Options:
A.-4
B.-3
C.4
D.3
Answer:A
Since,theanglebisectorofacuteanglebetweenOAandOBwouldbey=x
Since,thedistanceofCfrombisector = 3
2
β (1β)
2=3
2 = = ±3+1
β=2orβ= 1
Hence,thesumofallpossiblevalueofβ=2+ (−1) = 1
| |
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question146
Let
a=2^
i+λ1
^
j+3^
k,
b=4^
i+ (3λ2)^
j+6^
kand
c=3^
i+6^
j+ (λ31)^
kbe
threevectorssuchthat
b=2
aand
aisperpendicularto
cThenapossible
valueof(λ1,λ2,λ3)is:
[Jan.10,2019(I)]
Options:
A.(1,3,1)
B. 1
2,4,0
C. 1
2,4, 2
D.(1,5,1)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
( )
( )
Let
αand
βarecollinearforsamek
i.e.,
α=k
β
(λ2)
a+
b=k( 2)
a+3
b
(λ2)
a+
b=k( 2)
a+3k
b
(λ2k( 2))
a+
b(13k) = 0
But
aand
barenon-collinear,then
λ2k( 2) = 0,13k =0
k=1
3andλ21
3( 2) = 0
6 +2=0
λ= 4
( )
b=2
a
4^
i+ (3λ2)^
j+6^
k = 4^
i+1
^
j+6^
k
3λ2=1......(1)
aisperpendicularto
c
a.
c=0
6+1+3(λ31) = 0
2+1+λ31=0
λ3= 11......(2)
Since 1
2,4,0satisfiesequation(1)and(2).Hence,oneofpossiblevalueof
λ1= 1
2,λ2=4andλ3=0
)
( )
Question147
Let
a=^
i+^
j+ 2^
k,
b=b1
^
i+b2
^
j+ 2^
kand
c=5^
i+^
j+ 2^
kbethree
vectorssuchthattheprojectionvectorof
bon
ais
a.
If
a+
bisperpendicularto
c,then
bisequalto:
[Jan.09,2019(II)]
Options:
A.32
B.6
C.22
D.4
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question148
Let
a,
band
cbethreeunitvectors,outofwhichvectors
band
carenon-
parallel.Ifαandβaretheangleswhichvector
amakeswithvectors
b
and
crespectivelyand
a×
b×
c=1
2
b,then|αβ|isequalto
[Jan.12,2019(II)]
Options:
A.30°
B.90°
C.60°
D.45°
| |
( )
Projectionof
bon
a=
b.
a
a
=b1+b2+2
4
Accordingtoquestionb1+b2+2
2= 1+1+2=2
b1+b2=2........(1)
Since,
a+
bisperpendicularto
c.
Hence,
a.
c+
b.
c=0
8+5b1+b2+2=0........(2)
From(1)and(2),
b1= 3,b2=5
b= 3.^
i+5^
j+ 2^
k
b= 9+25 +2=6
| |
| |
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question149
Let
a=ij,
b=i+j+kand
cbeavectorsuchthat
a×
c+
b=
0and
a.
c=4,then
c2isequalto:
[Jan09,2019]
Options:
A.19
2
B.9
C.8
D.17
2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question150
Let
a=3^
i+2^
j+2^
kand
b=^
i+2^
j2^
kbetwovectors.Ifavector
perpendiculartoboththevectors
a+
band
a
bhasthemagnitude12
thenonesuchvectoris:
[April12,2019(I)]
| |
Since,
a,
band
carethreeunitvectors
a=
b=
c=1
Then,
a×
b×
c=1
2
b
a.
c
b
a.
b
c=1
2
b
a.
c=1
2and
a.
b=0
a
c cos β =1
2and
a
b cos α =0
⇒β=60°andα=90°
Hence,|αβ| = 90° 60° | = 30°
| | | | | |
( )
( ) ( )
| | | | | | | |
a×
c|2=
a|2
c|2
a.
c2
b|2=2
c|216⇒3=2
c|216
c|2=19
2
| | | ( )
| | |
|
Options:
A.4 2^
i+2^
j+2^
k
B.4 2^
i2^
j2^
k
C.4 2^
i+2^
j2^
k
D.4 2^
i2^
j+2^
k
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question151
Ifthevolumeofparallelopipedformedbythevectors^
i+λ^
j+^
k,^
j+λ^
k
andλ^
i+^
kisminimum,thenλisequalto:
[April12,2019(I)]
Options:
A.1
3
B. 1
3
C.3
D.3
Answer:B
Solution:
Solution:
( )
( )
( )
( )
Letvectorbeλ
a+
b×
a
b
Given,a=3^
i+2^
j+2^
kand
b=^
i+2^
j2^
k
a+
b=4^
i+4^
jand
a
b=2^
i+4^
k
∴vector = λ 4^
i+4^
j×2^
i+4^
k
=λ 16^
i16^
j8^
k = 2^
i2^
j^
k
Giventhatmagnitudeofthevectoris12.
12 =8|λ|√4+4+1 |λ| = 1
2
∴requiredvectoris±4 2^
i2^
j2^
k
[ ( ) ( ) ]
[ ( ) ( ) ]
[ ] [ ]
( )
Volumeoftheparallelepipedis,
$V=|{|\table1,\λ,1;0,1,\λ;\λ,0,1}||
={|1(1)+\λ(\λ^{2})+1(-\λ)|}$
= | λ3λ+1|
Letf(x) = x3x+1
Ondifferentiating,f′(x) = 3x21
-------------------------------------------------------------------------------------------------
Question152
Letα Randthethreevectors
a=α^
i+^
j+3^
k,
b=2^
i+^
jα^
kand
c=α^
i2^
j+3^
k.ThenthesetS =α:
a,
band
carecoplanar)
[April12,2019(II)]
Options:
A.issingleton
B.isempty
C.containsexactlytwopositivenumbers
D.containsexactlytwonumbersonlyoneofwhichispositive
Answer:B
Solution:
Solution:
(
Now,f′(x) = 0
x= ± 1
3
andf "(x) = 6x
Since,f " 1
3>0
x=1
3ispointoflocalminima.
( )
Forλ=λ1,volumeofparallelopipediszero.
∴vectorsarecoplanar.
Let,threevectors
a,
b,
carecoplanar,
then
a,
b,
c=0
α 1 3
2 1 α
α23
= 0α2+6=0
∵norealvalueof'α'exist.
[ ]
| |
-------------------------------------------------------------------------------------------------
Question153
Ifaunitvector
amakesanglesπ 3with^
i,π4with^
jandθ (0,π)
with^
k,thenavalueofis:
[April09,2019(II)]
Options:
A.
6
B.π
4
C.
12
D.
3
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question154
Let
α=3^
i+^
jand
β=2^
i^
j+3^
k.If
β=
β1
β2,where
β1isparallelto
α
and
β2isperpendicularto
α,then
β1×
β2isequalto:
[April09,2019(I)]
Options:
A.3^
i+9^
j+5^
k
B.3^
i9^
j5^
k
C.1
23^
i+9^
j+5^
k
D.1
23^
i9^
j+5^
k
Answer:C
( )
( )
∴setSisanemptyset.
Letcos α,cos β,cos γbedirectioncosinesofa.
cos α =cos π
3,cos β =cos π
4andcos γ =cos θ
cos2π
3+cos2π
4+cos2θ=1⇒cos2θ=1
4
cos θ = ±1
2θ=π
3or
3
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question155
Themagnitudeoftheprojectionofthevector2^
i+3^
j+^
konthevector
perpendiculartotheplanecontainingthevectors^
i+^
j+^
kand
^
i+2^
j+3^
k,is:
[April08,2019(I)]
Options:
A.3
2
B.6
C.36
D. 3
2
Answer:D
Solution:
Solution:
β=
β1
β2.......(1)
Since,
β2isperpendicularto
α.
β2.
α=0
Since,
β1isparallelto
a.
then
β1=λ
α(say)
a.
β=
a.
β1α.
β2
5=λα25=λ×10
α= 10
λ=1
2
B1=α
2
β1=
α
2
Crossproductwith
B1inequation(1)
β×
B1=
B2×
B1
β×
B1=
B1×
B2
β1×
β2=
β×
α
2
B1×
B2=1
2
^
i^
j^
k
21 3
310
=1
23^
i^
j(−9) + ^
k(5) = 1
23^
i+9^
j+5^
k
( | | )
| |
[ ] [ ]
Let
a=^
i+^
j+^
kand
b=^
i+2^
j+3^
k
∴vectorperpendicularto
aand
bis
a×
b
-------------------------------------------------------------------------------------------------
Question156
Let
a=3^
i+2^
j+x^
kand
b=^
i^
j+^
k,forsomerealx.
Then
a×
b=rispossibleif:
[April08,2019(II)]
Options:
A. 3
2<r33
2
B.r 53
2
C.0 <r3
2
D.3 3
2<r<53
2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question157
Let
ubeavectorcoplanarwiththevectors
a=2^
i+3^
j^
kand
b=^
j+^
k.If
uisperpendicularto
aand
u.
b24,then
u2isequalto:
| |
| |
a×
b=
^
i^
j^
k
111
123
= ^
i2^
j+^
k
Now,projectionofvector
c=2^
i+3= = ^
j+^
kon
a×
bis=
c.
a×
b
a×
b
=26+1
6 = 3
6=3
2
| |
|( )
| | | | |
Given,
a=3^
i+2^
j+x^
kand
b=^
i^
j+^
k
Now,
a×
b=
^
i^
j^
k
3 2 x
111
= (2+x)^
i+ (x3)^
j5^
k
a×
b=(2+x)2+ (x3)2+ (−5)2 = r
r=4+x2+4x +x2+96x +25
=2x22x +38 = 2 x2x+1
4+38 1
2
=2 x 1
2
2+75
2r75
2r53
2
| |
| |
( )
( )
[2018]
Options:
A.315
B.256
C.84
D.336
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question158
IfthepositionvectorsoftheverticesA,BandCofaΔABCare
respectively4^
i+7^
j+8^
k,2^
i+3^
j+4^
kand2^
i+5^
j+7^
k,thentheposition
vectorofthepoint,wherethebisectorofAmeetsBCis
[OnlineApril15,2018]
Options:
A.1
24^
i+8^
j+11^
k
B.1
36^
i+13^
j+18^
k
C.1
48^
i+14^
j+9^
k
D.1
36^
i+11^
j+15^
k
Answer:B
Solution:
Solution:
( )
( )
( )
( )
u,
a&
barecoplanar
u=λ
a×
b×
a = λ
a2.
b
a.
b
a
=λ4^
i+8^
j+16^
k = λ ^
i+2^
j+4^
k
Also,
u.
b=24 λ = 4
u= 4^
i+8^
j+16^
k
u|2=336
( ) { ( ) }
{ } { }
|
SupposeangularbisectorofAmeetsBCatD(x,y,z)
Usingangularbisectortheorem,
AB
AC =BD
DC
-------------------------------------------------------------------------------------------------
Question159
Let
a=^
i+^
j+^
k,
c=^
j^
kandavector
bbesuchthat
a×
b=
cand
a.
b=3.Then
bequals?
[OnlineApril16,2018]
Options:
A. 11
3
B.11
3
C.11
3
D.11
3
Answer:A
Solution:
Solution:
| |
BD
DC =(42)2+ (73)2+ (84)2
(42)2+ (75)2+ (87)2
=22+42+42
22+22+12=6
3=2
So,D(x,y,z) (2)(2) + (1)(2)
2+1,(2)(5) + (1)(3)
2+1
(2)(7) + (1)(4)
2+1
D(x,y,z) 6
3,13
3,18
3
Therefore,positionvectorofpointP=1
36^
i+13^
j+18^
k
(
)
( )
( )
a=^
i+^
j+^
k
a= 3
&
c=^
j^
k
c2
Now,
a×
b=
c(Given)
a
b sin θ =
c
a
b sin θ = 2.......(i)
Also
a.
b=3
a
b cos θ =3........(ii)
Dividing[i]by[ii],weget
| |
| |
| | | | | |
| | | |
| | | |
-------------------------------------------------------------------------------------------------
Question160
If
a,
b,and
careunitvectorssuchthat
a+2
b+2
c=
0,then
a×
cis
equalto
[OnlineApril15,2018]
Options:
A.1
4
B.15
4
C.15
16
D.15
16
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question161
Let
a=2^
i+^
j2kand
b=^
i+^
j.Let
cbeavectorsuchthat
c
a=3,
a×
b×
c=3andtheanglebetween
cand
a×
bbe30°.
Then
a.
cisequalto:
[2017]
Options:
| |
| | | ( ) |
tan θ =2
3sin θ =2
11
Substitutingvalueofsin θin[i]weget
3
b2
11 = 2
b=11
3
| |
| |
∵
a+2
b+2
c=
0[Given]
a+2
c= 2
b
a+2
c.
a+2
c = 2
b2
b
a.
a+4
c.
c+4
a.
c=4
b.
b1+4+4
a.
c=4
a.
c=1
4
a.
c|2+
a×
c|2=1
aisunitvector)
1
16+
a×
c|2=1
a×
c|2=15
16
a×
c=15
4
( ) ( ) ( ) ( )
| | (
|
| | |
A.1
8
B.25
8
C.2
D.5
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question162
Ifthevector
b=3^
j+4^
kiswrittenasthesumofavector
b1,parallelto
a=^
i+^
jandavector
b2,perpendicularto
a,then
b1×
b2isequalto:
[OnlineApril9,2017]
Options:
A.3^
i+3^
j9^
k
B.6^
i6^
j+9
2
^
k
C.6^
i+6^
j9
2
^
k
D.3^
i3^
j+9^
k
Answer:B
Solution:
Solution:
Given:
a=2^
i+^
j2k,
b=^
i+^
j
a=3
a×
b=2^
i2^
j+^
k
a×
b=22+22+12=3
Wehave
a×
b×
c=
a×
b
c sin 30 n
a×
b×
c=3
c.1
2⇒3=3
c.1
2
c=2
Now
c
a=3
Onsquaring,weget
c|2+
a|22
a.
c=94+92
a.
c=9
a.
c=2
c.
a=
a.
c
| |
| |
( ) | | | |
| ( ) | | |||
| |
| |
| |
[ ]
b1=
b1.
a^
a
1 = 3^
j+4^
k.^
i+^
j
2
^
i+^
j
2
( ) {( ) ( ) } ( )
-------------------------------------------------------------------------------------------------
Question163
Thearea(insq.units)oftheparallelogramwhosediagonalsarealong
thevectors8^
i6^
jand3^
i+4^
j12^
k,is:
[OnlineApril8,2017]
Options:
A.26
B.65
C.20
D.52
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question164
LetABCbeatrianglewhosecircumcentreisatP.Ifthepositionvectors
A,B,CandPare
a,
b,
cand
a+
b+
c
4respectively,thenthepositionvector
oftheorthocentreofthistriangle,is:
=3^
i+^
j
2× 2=3^
i+^
j
2
b1+
b2=
b
b2=
b
b1 = 3^
j+4^
k3
2
^
i+^
j
b2= 3
2
^
i+3
2
^
j+4^
k
&
b1×
b2=
^
i^
j^
k
3
2
3
20
3
2
3
24
b1×
b2=^
i(6) ^
j(6)+^
k9
4+9
4
6^
i6^
j+9
2
^
k
( ) ( )
( ) ( )
| |
( )
Let;d1=8^
i6^
j+0^
k&d 2=3^
i+4^
j12^
kd1×d2| =
^
i^
j^
k
860
3 4 12
= 72^
i (−96)^
j+50^
k
d1×d2| = 16900 =130
∴Areaofparallelogram = 1
2d1×d2=1
2×130 =65
| | | |
| |
[OnlineApril10,2016]
Options:
A.
a+
b+
c
2
B.
a+
b+c
C.
a+
b+
c
2
D.
0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question165
InatriangleABC,rightangledatthevertexA,ifthepositionvectorsof
A,BandCarerespectively3^
i+^
j^
k, ^
i+3^
j+p^
kand5^
i+a^
j4^
k,then
thepoint(pq)liesonaline:
[OnlineApril9,2016]
Options:
A.makinganobtuseanglewiththepositivedirectionofx-axis
B.paralleltox-axis
C.paralleltoy-axis
D.makinganacuteanglewiththepositivedirectionofx-axis
Answer:D
( )
( )
Positionvectorofcentriod
G=
a+
b+
c
3
Positionvectorofcircumcentre
C=
a+
b+
c
4
G=2
C+
r
3
3
G=2
C+
r
r=3
G2
C=
a+
b+
c−2
a+
b+
c
4
=
a+
b+
c
2
( ) ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question166
Let
a,
band
cbethreeunitvectorssuchthat
a×
b×
c=3
2
b+
c.If
bis
notparallelto
c,thentheanglebetween
aand
bis:
[2016]
Options:
A.
3
B.
6
C.
4
D.π
2
Answer:B
Solution:
Solution:
( ) ( )
AB = 4^
i+2^
j+ (p+1)^
k
AC =2^
i+ (q1)^
j3^
k
AB AC
⇒AB .AC =0
8+2(q1) 3(p+1) = 0
3p 2q +13 =0
(p,q)lieson3x 2y +13 =0
slope = 3
2
∴Acuteanglewithx-axis
a×
b×
c=3
2(b+c)
a.
c
b
a.
b
c = 3
2
b+3
2
c
Oncomparingbothsides
a.
b= 3
2cos θ = 3
2
aand
bareunitvectors]
whereθistheanglebetween
aand
b
θ=
6
( )
( ) ( )
[
-------------------------------------------------------------------------------------------------
Question167
Let
a,
band
cbethreenon-zerovectorssuchthatnotwoofthemare
collinearand
a×
b×
c=1
3
b
c
a.Ifθistheanglebetweenvectors
b
and
c,thenavalueofsin θis:
[2015]
Options:
A.2
3
B.23
3
C.22
3
D.2
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question168
InaparallelogramABD,
AB =a,
AD =band
AC =c,then
DA .
ABhasthe
value:
[OnlineApril11,2015]
Options:
A.1
2(a2+b2+c2)
B.1
2(a2b2+c2)
( ) | | | |
| | | | | |
a×
b×
c=1
3
b
c
a
⇒−
c×
a×
b=1
3
b
c
a
⇒−
c.
b
a+
c.
a
b = 1
3
b
c
a
⇒−
b
c cos θ
a+
c.
a
b=1
3
b
c
a
a,
b,
carenoncollinear,theaboveequationispossibleonlywhen
cos θ =1
3and
c.
a=0
cos θ = 1
3
sin θ =22
3;θIIquad
( ) | | | |
( ) | | | |
( ) ( ) | | | |
| | | |( ) | | | |
C.1
2(a2+b2c2)
D.1
3(b2+c2a2)
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question169
Let
aand
bbetwounitvectorssuchthat
a+
b= 3.
If
c=
a+2
b+3
a×
b,then2
cisequalto:
[OnlineApril10,2015]
Options:
A.55
B.37
C.51
D.43
Answer:A
Solution:
Solution:
| |
( ) | |
Let|AB| = a, | AD | = band|AC| = c
WehaveAB +AD =AC
Onsquaringboththeside,weget
|AB|2+ | AD |2+2AB .AD = | AC|2
a2+b2+2AB . (−DA) = c2
2AB .DA =a2+b2c2
DA .AB =1
2(a2+b2c2)
a+
b= 3
anglebetween
aand
bis60°.
a×
bis⊥rtoplanecontaining
aand
b
c=
a+2
b+3
a×
b
c=
a2+4
b|2+2.2
a|2cos 60°
n1+3
a
b sin 60°
n2+3
a
b sin 60° .
n2
n1r
n2
c2= (1+4+2) + 9×3
4⇒
c|2=7+27 4=55 4
| |
( )
| | | | | | ||| | ||
| | |
-------------------------------------------------------------------------------------------------
Question170
If^
x,^
yand^
zarethreeunitvectorsinthree-dimensionalspace,thenthe
minimumvalueof ^
x+^
y2+^
y+^
z|2+^
z+^
x|2
[OnlineApril12,2014]
Options:
A.3
2
B.3
C.33
D.6
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question171
If
a=2,
b=3and 2
a
b=5,then 2
a+
bequals:
[OnlineApril9,2014]
Options:
A.17
B.7
C.5
D.1
Answer:C
Solution:
| | | |
| | | | | | | |
2
c= 55
| |
^
x+^
y+^
z20
3+2^
x.^
y0
2^
x.^
y 3
Now, ^
x+^
y2+^
y+^
z|2+^
z+^
x|2
=6+2x.^
y6+ (−3)
⇒ ^
x+^
y2+^
y+^
z|2+^
z+^
x|23
( )
| | | |
| | | |
-------------------------------------------------------------------------------------------------
Question172
If
a×
b
b×
c
c×
a=λ
a,
b,
c
2thenλisequalto
[2014]
Options:
A.0
B.1
C.2
D.3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question173
If
x=3^
i6^
j^
k,
y=^
i+4^
j3^
kand
z=3^
i4^
j12^
kthenthe
magnitudeoftheprojectionof
x×
yon
zis:
[OnlineApril19,2014]
Options:
A.12
B.15
C.14
D.13
[ ] [ ]
Given 2
a
b=5
2
a2+
b|22×2
a
b cos θ = 5
Puttingvaluesof
aand
b,weget
(2×2)2+ (3)224 cos θ =25
cos θ =0
θ=π
2
2
a+
b= 16 +9+24 cos θ = 25 =5
| |
( | | ) | | |
| | | |
| |
L.H.S=
a×
b.
b×
c×
c×
a
=
a×
b.
b×
c.
a
c−
b×
c
c
a
=
a×
b.
b
c
a
c[∵b×c.c=0]
=
a
b
c.
a×
b.
c=
a
b
c2
=
a×
b
b×
c
c×
a=
a
b
c2
Soλ=1
[ ( ) [ ( ) ( ) ]
( ) [ ( ) ( ) ]
( ) ] ]
[ ] ) [ ]
[ ] ] [ ]
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question174
If
c2=60and
c×^
i+2^
j+5^
k=
0,thenavalueofc . 7^
i+2^
j+3^
kis
[OnlineApril11,2014]
Options:
A.42
B.12
C.24
D.122
Answer:D
Solution:
| | ( ) ( )
Let
x=3^
i6^
j^
k,
y=^
i+4^
j3^
kand
z=3^
i4^
j12^
k
Now,
x×
y=
^
i^
j^
k
361
1 4 3
= 22^
i+8^
j+18^
k
Projectionof^
x×^
yon^
z=^
x+^
y. (z)
^
z
=22(3) + 8(−4) + 18(−12)
9+16 +144 = 182
13 = 14
Now,magnitudeofproection=14.
| |
( )
| |
Let,
c=a^
i+b^
j+c^
k
Given,
c×^
i+2^
j+5^
k=
0
^
i^
j^
k
a b c
125
=
0
(5b 2c)^
i (5a c)^
j+ (2a b)^
k = 0^
i+0^
j+0^
k
Comparingbothsides,weget
5b 2c =0;5a c=0;2a b=0
or5b =2c;5a =c;2a =b
Alsogiven
c2=60 a2+b2+c2=60
Puttingthevalueofbandcinaboveeqn.,weget
a2+ (2a)2+ (5a)2=60
a2+4a2+25a2=60$\⇒30a^{2}=60
$$a^{2}=2$
a= ±2;b=22;c=52
Now,
c=a^
i+b^
j+c^
k
c= 2^
i+22^
j+52^
k
( )
| |
| |
-------------------------------------------------------------------------------------------------
Question175
Ifthevectors
AB =3^
i+4^
kand
AC =5^
i2^
j+4^
karethesidesofatriangle
ABC,thenthelengthofthemedianthroughAis
[2013]
Options:
A.18
B.72
C.33
D.45
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question176
If
aand
barenon-collinearvectors,thenthevalueofαforwhichthe
vectors
u= (α2)
a+
band
v= (2+)
a3
barecollinearis:
[OnlineApril23,2013]
Options:
Valueof
c. 7^
i+2^
j+3^
kis
2^
i+22^
j+52^
k. 7^
i+2^
j+3^
k
= 72+42+152=122
( )
( ) ( )
(c)Wehave,
AB +
BC +
CA =0
BC =
AC
AB
LetMbemid-pointofBC
Now,
BM =
AC
AB
2because
BM =
BC
2
Also,wehave
AB +
BM +
M A =0
AB +
AC
AB
2=
AM
1
AM =
AB +
AC
2 = 4^
i^
j+4^
k
AM = 33
( )
| |
A.3
2
B.2
3
C.3
2
D.2
3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question177
If^
a,^
band^
careunitvectorssatisfying^
a 3^
b+^
c=
0,thentheangle
betweenthevectors^
aand^
cis:
[OnlineApril22,2013]
Options:
A.π
4
B.π
3
C.π
6
D.π
2
Answer:B
Solution:
Solution:
Since,
uand
varecollinear,therefore
ku +
v=0
[k(α2) + 2+]
a+(k3)
b=0.......(i)
Since
aand
barenon-collinear,thenforsomeconstantmandn,
m
a+n
b=0m=0,n=0
Hencefromequation(i)
k3=0k=3
Andk(α2) + 2+ =0
3(α2) + 2+ =0α=2
3
Letanglebetween^
aand^
cbeθ.
Now,^
a 3^
b+^
c=
0
^
a+^
c= 3^
b
^
a+^
c.^
a+^
c=3^
b.^
b
^
a.^
a+^
a.^
c+^
c.^
a+^
c.^
c = 3×1
1+2 cos θ +1=3
( )
( ) ( ) ( )
-------------------------------------------------------------------------------------------------
Question178
Let
a=2^
i^
j+^
k,
b=^
i+2^
j^
kand
c=^
i+^
j2^
kbethreevectors.A
vectorofthetype
b+λ
cforsomescalarλ,whoseprojectionon
aisof
magnitude 2
3is:
[OnlineApril9,2013]
Options:
A.2^
i+^
j+5^
k
B.2^
i+3^
j3^
k
C.2^
i^
j+5^
k
D.2^
i+3^
j+3^
k
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question179
Let
a=2^
i+^
j2^
k,
b=^
i+^
j.If
cisavectorsuchthat
a
c=
c,
c
a=22andtheanglebetween
a×
band
cis30°,then
a×
b×
cequals:
| | | |
| ( ) |
cos θ =1
2θ=π
3
Let
d=
b+λ
c
d=^
i+2^
j^
k+λ^
i+^
j2^
k
= (1+λ)^
i+ (2+λ)^
j (1+)^
k
Ifθbetheanglebetween
dand
a,thenprojectionof
d
or
b+λ
con
a
=
d cos θ =
d
d.
a
d
a
=
d.
a
a
=2(λ+1) (λ+2) ( +1)
4+1+1 = λ1
6
Butprojectionof
don
a=2
3
λ+1
6=2
3λ2+ +1
6=2
3
λ2+ 3=0λ2+ λ3=0
λ(λ+3) 1(λ+3) = 0,λ=1, 3
whenλ=1,then
b+λ
c=2^
i+3^
j3^
k
whenλ= 3,then
b+λ
c= 2^
i^
j+5^
k
( )
( )
| | | | ( | | | | )| |
[OnlineApril25,2013]
Options:
A.1
2
B.33
2
C.3
D.3
2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question180
Thevector ^
i×
a
b^
i+^
j×
a.
b^
j+^
k×
a.
b^
kisequalto:
[OnlineApril9,2013]
Options:
A.
b×
a
B.
a
C.
a×
b
D.
b
Answer:C
Solution:
( ) ( ) ( )
a=2^
i+^
j2^
k,
b=^
i+^
j
a=3
and
a×
b=
^
i^
j^
k
2 1 2
1 1 0
= 2^
i2^
j+^
k
a×
b= 4+4+1=3
Now,
c
a=22
c
a|2=8
c
a.
c
a=8
c|2+
a|22
c.
a=8
c|2+92
c=8
c12=0
c=1
a×
b×
c=
a×
b
c sin 30° = 3×1×1
2=3
2
| |
| |
| |
| | |
| | ( )
| |
| | |
( | | ) | |
| ( ) | | | | |
-------------------------------------------------------------------------------------------------
Question181
Statement1:Ifthepoints(1,2,2),(2,1,2)and(2,2,z)and(1,1,1)are
coplanar,thenz=2.
Statement2:Ifthe4pointsP,Q,RandSarecoplanar,thenthevolume
ofthetetrahedronPQRSis0.
[OnlineMay12,2012]
Options:
A.Statement1isfalse,,Statement2istrue.
B.Statement1istrue,Statement2isfalse.
C.Statement1istrue,Statement2istrue,Statement2isacorrectexplanationofStatement1.
D.Statement1istrue,Statement2istrue,Statement2isnotacorrectexplanationof
Statement1.
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question182
If
a=^
i2^
j+3^
k,
b=2^
i+3^
j^
kand
c=r^
i+^
j+ (2r 1)^
karethree
vectorssuchthat
cisparalleltotheplaneof
aand
b,thenrisequalto
[OnlineMay19,2012]
Options:
A.1
B.-1
C.0
D.2
^
i×
a
b^
i+^
j×
a.
b^
j+ ^
k×
a.
b^
k
^
i.
a×
b^
i+^
j.
a×
b^
j+ ^
k.
a×
b^
k
a×
b.
c=
a.
b×
c
a×
b^
i+
a×
b^
j+
a×
b^
k =
a×
b
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
Statement-1
Points(1,2,2),(2,1,2),(2,2,z)and(1,1,1)arecoplanarthenz=2whichisfalse.
110
1 0 z2
011
=0
1(z2) + 1(−1) = 0z=3
Statement-2isthetruestatement.
| |
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question183
LetABCDbeaparallelogramsuchthat
AB =
q,
AD =
pandBADbean
acuteangle.If
risthevectorthatcoincidewiththealtitudedirected
fromthevertexBtothesideAD,then
risgivenby:
[2012]
Options:
A.
r=3
q3
p.
q
p.
p
p
B.
r=
q+
p.
q
p.
p
p
C.
r=
q
p.
q
p.
p
p
D.
r= 3
q3
p.
q
p.
p
p
Answer:B
Solution:
Solution:
( )
( )
( )
( )
( )
( )
( )
( )
Let
a=^
i2^
j+3^
k,and
c=r^
i+^
j+ (2r 1)^
k
Since,
cisparalleltotheplaneof
aand
btherefore,
a,
band
carecoplanar.
123
2 3 1
r 1 2r 1
=0
1(6r 3+1) + 2(4r 2+r)+3(23r) = 0
6r 2+10r 4+69r =0
r=0
| |
LetABCDbeaparallelogramsuchthatAB =
q,AD =
pand∠BADbeanacuteangle.
Wehave
AX =
p.
q
p
p
p
=
p.
q
p2
p
Fromtrianglelaw
Let
r=BX =BA +AX =
q+
p.
q
p2
p
(| | )(| | )| |
| |
Question184
Let
aand
bbetwounitvectors.Ifthevectors
c=^
a+2^
band
d=5^
a4^
b
areperpendiculartoeachother,thentheanglebetween^
aand^
bis:
[2012]
Options:
A.π
6
B.π
2
C.π
3
D.π
4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question185
Ifa +b+c=0,
a=3,
b=5and
c=7,thentheanglebetween
aand
bis
[OnlineMay19,2012]
Options:
A.π
3
B.π
4
C.π
6
D.π
2
Answer:A
| | | | | |
Giventhat
c=^
a+2^
band
d=5^
a4^
band ^
a=^
b=1
Since
cand
dareperpendiculartoeachother
c.
d=0
^
a+2^
b.5^
a4^
b=0
5+6^
a.^
b8=0
^
a.^
b=1
2sin θ =1
2θ=π
3
| | | |
( ) ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question186
Aunitvectorwhichisperpendiculartothevector2^
i^
j+2^
kandis
coplanarwiththevectors^
i+^
j^
kand2^
i+2^
j^
kis
[OnlineMay12,2012]
Options:
A.2^
j+^
k
5
B.3^
i+2^
j2^
k
17
C.3^
i+2^
j+2^
k
17
D.2^
i+2^
j1^
k
3
Answer:D
Solution:
Leta+b+c=0 (a+b) = c
(a+b)2=c2
a2+b2+2a .b=c2
9+25 +2.3.5 cos θ =49
a=3,
b=5 and
c=7
cos θ =1
2θ=π
3
(| | | | | | )
Letx^
i+y^
j+z^
kbetherequiredunitvector.
Since^
aisperpendicularto 2^
i^
j+2^
k.
2x y+2z =0.......(i)
Sincevectorx^
i+y^
j+z^
kiscoplanarwiththevector^
i+^
j^
kand2^
i+2^
j^
k
x^
i+y^
j+z^
k=p^
i+^
j^
k+q 2^
i+2^
j^
k
wherepandqaresomescalars.
x^
i+y^
j+z^
k= (p+2q)^
i+(p+2q)^
j (p+q)^
k
x=p+2q,y=p+2q,z= pq
Nowfromequation(i),
2p +4q p2q 2p 2q =0
⇒−p=0p=0
x=2q,y=2q,z= q
Sincevectorx^
i+y^
j+z^
kisaunitvector,therefore
x^
i+y^
j+z^
k=1
x2+y2+z2=1
x2+y2+z2=1
4q2+4q2+q2=1
9q2=1q= ±1
3
( )
( ) ( )
| |
-------------------------------------------------------------------------------------------------
Question187
ABCDisparallelogram.ThepositionvectorsofAandCarerespectively,
3^
i+3^
j+5^
kand^
i5^
j5^
k.IfM isthemidpointofthediagonalDB,
thenthemagnitudeoftheprojectionof
OM on
OC,whereOistheorigin,
is
[OnlineMay7,2012]
Options:
A.751
B. 7
50
C.750
D. 7
51
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Whenq=1
3,thenx=2
3,y=2
3,z= 1
3
Whenq= 1
3,thenx= 2
3,y= 2
3,z=1
3
Hererequiredunitvectoris2^
i+2^
j1^
k
3
or−2
3
^
i2
3
^
j+1
3
^
k
Inaparallelogram,diagonalsbisecteachother.So,midpointofDBisalsothemid-pointofAC.
Mid-pointofM=2^
i^
j
DirectionratioofOC = (1, 5, 5)
DirectionratioofOM = (2, 1,0)
AngleθbetweenOM andOCisgivenby
cos θ = (1×2) + (−5)(−1) + (−5)(0)
22+ (−1)2(1)2+ (−5)2+ (−5)2
=2+5
551 =7
551
Projectionof
OM on
OCisgivenby
|OM | . cos θ = 5×7
5× 51 =7
51
Question188
Statement1:Thevectors
a,
band
clieinthesameplaneifandonlyif
a.
b×
c=0
Statement2:Thevectors
uand
vareperpendicularifandonlyif
u.
v=0
where
u×
visavectorperpendiculartotheplaneof
uand
v.
[OnlineMay26,2012]
Options:
A.Statement1isfalse,Statement2istrue.
B.Statement1istrue,Statement2istrue,Statement2iscorrectexplanationforStatement1.
C.Statement1istrue,Statement2isfalse.
D.Statement1istrue,Statement2istrue,,Statement2isnotacorrectexplanationfor
Statement1.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question189
If
u=^
j+4^
k,
v=^
i+3^
kand
w=cos θ ^
i+sin θ ^
jarevectorsin3-
dimensionalspace,thenthemaximumpossiblevalueof
u×
v.
wis
[OnlineMay12,2012]
Options:
A.3
B.5
C.14
D.7
Answer:B
Solution:
( )
| |
Statement-1
Thevectors
a,
band
clieinthesameplane.
a,
band
carecoplanar.
Weknow,thenecessaryandsufficientconditionsforthreevectorstobecoplanaristhat
a
b
c=0
i.e.
a.
b×
c=0
Hence,statement-1istrue.
[ ]
( )
-------------------------------------------------------------------------------------------------
Question190
If
a=^
i2^
j+3^
k,
b=2^
i+3^
j^
kand
c=λ^
i+^
j+ ( 1)^
karecoplanar
vectors,thenλisequalto
[OnlineMay7,2012]
Options:
A.0
B.-1
C.2
D.1
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question191
Let
a,
b,
cbethreenon-zerovectorswhicharepairwisenon-collinear.If
a+3
biscollinearwith
cand
b+2
ciscollinearwith
a,then
a+3
b+6
cis
:
[2011RS]
Options:
A.
a
Let
u=^
j+4^
k,
v=^
i+3^
kand
w=cos θ ^
i+sin θ ^
j
Now,
u×
v=
^
i^
j^
k
0 1 4
1 0 3
= ^
i(−3) ^
j(−4) + ^
k(−1)
= 3^
i+4^
j^
k
Now,
u×v.
w = 3^
i+4^
j^
k.cos θ ^
i+sin θ ^
j
= 3 cos θ +4 sin θ
Now,maximumpossiblevalueof|−3 cos θ +4 sin θ| = (−3)2+ (4)2= 25 =5
| |
( ) ( ) ( )
Since
a=^
i2^
j+3^
k,
b=2^
i+3^
j^
kand
c=λ^
i+^
j+ ( 1)^
karecoplanar
therefore
a
b
c=0
i.e.,
1 2 λ
23 1
31 1
=0
1( 2) 2(− 1) + λ(−7) = 0
( 2) + +2+2+ =0
=0λ=0
[ ]
| |
B.
c
C.
0
D.
a+
c
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question192
Ifthep^
i+^
j+^
k,^
i+q^
j+^
kand^
i+^
j+r^
k(pqr1)vectorare
coplanar,thenthevalueofpqr (p+q+r)is
[2011RS]
Options:
A.2
B.0
C.-1
D.-2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question193
Thevectors
aand
barenotperpendicularand
cand
daretwovectors
Asperquestion
a+3
b=λ
c........(i)
b+2
c=µ
a.......(ii)
Onsolvingequations(i)and(ii)
(1+)
a (λ+6)
c=0
As
aand
carenoncollinear,
1+ =0andλ+6=0
From(i)
a+3
b+6
c=
0
Thegivenvectorsarecoplanarthen
p 1 1
1 q 1
1 1 r
=0
p(qr 1) + 1(1r) + 1(1q) = 0
pqr p+1r+1q=0
pqr (p+q+r) = 2
| |
satisfying
b×
c=
b×
dand
a.
d=0Thenthevector
disequalto
[2011]
Options:
A.
c+
a.
c
a.
b
b
B.
b+
b.
c
a.
b
c
C.
c
a.
c
a.
b
b
D.
b
b.
c
a.
b
c
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question194
If
a=1
10 3^
i+^
kand
b=1
72^
i+3^
j6^
k,thenthevalueof
2
a
b
a×
b×
a+2
bis
[2011]
Options:
A.-3
B.5
C.3
D.-5
Answer:D
Solution:
( )
( )
( )
( )
( ) ( )
( ) [ ( ) ( ) ]
Giventhat
a.
d0,
a.
d=0
Now,
b×
c=
b×
d
a×
b×
c=
a×
b×
d
a.
c
b
a.
b
c = a
.
d
b
a.
b
d
a.
b
d=
a.
c
b+
a
b
c
d=
c
a.
c
a.
b
b
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question195
Ifthevectors
a=^
i^
j+2^
k,
b=2^
i+4^
j+^
kand
c=λ^
i+^
j+µ^
kare
mutuallyorthogonal,then(λ,µ) =
[2010]
Options:
A.(2,-3)
B.(-2,3)
C.(3,-2)
D.(-3,2)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question196
Let
a=^
j^
kand
c=^
i^
j^
k.Thenthevector
bsatisfying
a×
b+
c=
0
and
a.
b=3is
[2010]
Options:
A.2^
i^
j+2^
k
B.^
i^
j2^
k
C.^
i+^
j2^
k
2
a
b
a×
b×
a+2
b
=2
a
b.
a×
b×
a+2
a×
b×
b
=2
a
b
a.a
b
a.
b
a+2
a.
b
b2
b.b
a
=2
a
b
b0+02
a
Fromgivenvaluesweget
a.
b=0and
b.
b=1
= 4
a.
a
b.
b= 5
( ) ( ( ) ( ) )
( ) ( ( ) ( ) )
( ) ( ( ) ( ) ( ) ( ) )
( ) ( )
Giventhat,
a,
band
caremutuallyorthogonal
a.
b=0,
b.
c=0,
c.
a=0
+4+µ=0......(i)
λ1+ =0.......(ii)
Onsolving(i)and(ii),wegetλ= 3,µ=2
D.^
i+^
j2^
k
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question197
If
u,
v,
warenon-coplanarvectorsandp,qarerealnumbers,thenthe
equality 3
up
vp
ωp
v
ωq
u2
ωq
vq
u=0holdsfor:
[2009]
Options:
A.exactlytwovaluesof(p,q)
B.morethantwobutnotallvaluesof(p,q)
C.allvaluesof(p,q)
D.exactlyonevalueof(p,q)
Answer:D
Solution:
Solution:
[ ] [ ] [ ]
Giventhat
c=
b×
a
b.
c=
b.
b×
a
b.
c=0
b1
^
i+b2
^
j+b3
^
k.^
i^
j^
k=0
where
b=b1
^
i+b2
^
j+b3
^
k
b1b2b3=0......(i)
and
a.
b=3^
j^
k. b1
^
i+b2
^
j+b3
^
k=3
b2b3=3
Fromequation(i)
b1=b2+b3= (3+b3) + b3 = 3+2b3
b= (3+2b3)^
i+ (3+b3)^
j+b3
^
k
Fromtheoptiongiven,itisclearthatb3equaltoeither2or-2
Ifb3=2then
b=7^
i+5^
j+2^
kwhichisnotpossibleIf
b3= 2,then
b= ^
i+^
j2^
k
( )
( ) ( )
( ) ( )
u,
v,
warenon-coplanarvectors
∴
u,
v,
w0
Now, 3
u,p
v,p
wp
v,p
w,q
u− 2
w,q
v,q
u=0
⇒3p2
u,
v,
wpq
v,
w,
u−2q2
w,
v,
u=0
⇒3p2
u,
v,
wpq
u,
v,
w−2q2
u,
v,
w=0
(3p2pq +2q2)
u,
v,
w=0
3p2pq +2q2=0
u,
v,
w=0
2p2+p2pq +q2
4+7q2
4=0
[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ]
( [ ] )
-------------------------------------------------------------------------------------------------
Question198
Thevector
a=α^
i+2^
j+β^
kliesintheplaneofthevectors
b=^
i+^
jand
c=^
j+^
kandbisectstheanglebetween
band
c.Thenwhichoneofthe
followinggivespossiblevaluesofαandβ?
[2008]
Options:
A.α =2,β=2
B.α =1,β=2
C.α =2,β=1
D.α =1,β=1
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question199
Thenon-zerovectorsare
a,
band
carerelatedby
a=8
band
c= 7
b.
Thentheanglebetween
aand
cis
[2008]
Options:
A.0
B.π
4
C.π
2
D.pi
Answer:D
2p2+pq
2
2+7
4q2=0
p=0,q=0,p=q2
Thisispossibleonlywhenp=0,q=0
∴Thereisexactlyonevalueof(p,q)
( )
aliesintheplaneof
band
c
a=
b+λ
c
α^
i+2^
j+β^
k=^
i+^
j+λ^
j+^
k
α=1,2=1+λ,β=λ
α=1,β=1
( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question200
Let
a=^
i+^
j+^
k,
b=^
i^
j+2^
kand
c=x^
i+ (x2)^
j^
k.Ifthevector
clies
intheplaneof
aand
b,thenxequals
[2007]
Options:
A.-4
B.-2
C.0
D.1.
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question201
If^
uand^
vareunitvectorsandθistheacuteanglebetweenthem,then
2^
u×3^
visaunitvectorfor
[2007]
Options:
A.novalueofθ
B.exactlyonevalueofθ
Clearly
a= 8
7
c
a
candareoppositeindirection
∴Anglebetween
aand
cisπ
Given
a=^
i+^
j+^
k,
b=^
i^
j+2^
kand
c=x^
i+ (x2)^
j^
k.
Giventhat
cliesintheplaneof
aand
b,then
a,
band
carecoplanar
a
b
c=0
i.e.
1 1 1
112
x(x2) 1
=0
1[12(x2)] 1[−12x]+1[x2+x] = 0
12x +4+1+2x +2x 2=0
2x = 4x= 2
[ ]
| |
C.exactlytwovaluesofθ
D.morethantwovaluesofθ
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question202
Aparticlejustclearsawallofheightbatadistanceaandstrikesthe
groundatadistancecfromthepointofprojection.Theangleof
projectionis
[2007]
Options:
A.tan1bc
a(ca)
B.tan1bc
a
C.tan1b
ac
D.45°.
Answer:A
Solution:
Giventhat 2^
u×3^
v=1andθisacuteanglebetween^
uand^
v,^
u=1,^
v=1
2^
u×3^
v=6^
u^
v sin θ =1
6|sin θ =1sin θ =1
6
Hence,thereisexactlyonevalueofθforwhich2^
u×3^
visaunitvector.
| | | | | |
| | | | | | | |
|
LetBbethetopofthewallwhosecoordinateswillbe(a,b).Range(R)=c
Bliesonthetrajectory
y=x tan α 1
2gx2
u2cos2α
b=a tan α 1
2ga2
u2cos2α
b=a tan α 1 ga
2u2cos2α tan α
=a tan α 1 a
2u2
gcos2α.sin α
cos α
[ ]
[ ]
-------------------------------------------------------------------------------------------------
Question203
Abodyweighing13kgissuspendedbytwostrings5mand12mlong,
theirotherendsbeingfastenedtotheextremitiesofarod13mlong.If
therodbesoheldthatthebodyhangsimmediatelybelowthemiddle
point,thentensionsinthestringsare
[2007]
Options:
A.5kgand12kg
B.5kgand13kg
C.12kgand13kg
D.5kgand5k
Answer:A
Solution:
=a tan α 1 a
u2.2 sin α cos α
g
=a tan α 1 a
u2sin 2 α
g
=a tan α 1 a
RR=u2sin2α
g
b=a tan α 1 a
c
b=a tan α .ca
c
tan α =bc
a(ca)
Theangleofprojection,
α=tan1bc
a(ca)
[ ]
[ ]
[ ] ( )
[ ]
( )
InΔABC
132=52+122⇒AB2=AC2+BC2
ACB =90°
MismidpointofthehypotenuseAB,thereforeM A =M B = M C
A= ACM =θ
ApplyingLami'stheorematC,weget
T1
sin(180 θ)=T2
sin(90 +θ) = 13kg
sin 90°
T1=13 sin θandT2=13 cos θ
-------------------------------------------------------------------------------------------------
Question204
TheresultantoftwoforcesPnand3nisaforceof7n.Ifthedirectionof
3nforcewerereversed,theresultantwouldbe19n.ThevalueofPis
[2007]
Options:
A.3n
B.4n
C.5n
D.6n.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question205
ABCisatriangle,rightangledatA.Theresultantoftheforcesacting
alongAB,BCwithmagnitudes 1
ABand 1
ACrespectivelyistheforcealong
AD,whereDisthefootoftheperpendicularfromAontoBC.The
magnitudeoftheresultantis
[2006]
Options:
A. AB2+AC2
(AB)2(AC)2
T1=13 ×5
13andT2=13 ×12
13
T1=5kgandT2=12kg
Giventhat:ForceP=Pn,Q=3n,resultantR=7n&P = Pn,Q = (−3)n,R = 19n
WeknowthatR2=P2+Q2+2PQ cos α
(7)2=P2+ (3)2+2×P×3 cos α
49 =P2+9+6P cos α
40 =P2+6P cos α.....(i)
and(√19)2=P2+ (−3)2+2P×−3 cos α
19 =P2+96P cos α
10 =P26P cos α.....(ii)
Adding(i)and(ii)50 =2P2
P2=25 P=5n
B.(AB)(AC)
AB +AC
C. 1
AB +1
AC
D. 1
AD
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question206
Thevaluesofa,forwhichpointsA,B,Cwithpositionvectors
2^
i^
j+^
k,^
i3^
j5^
kanda^
i3^
j+^
krespectivelyaretheverticesofa
rightangledtrianglewithC =π
2are
[2006]
Options:
A.2and1
B.-2and-1
C.-2and1
D.2and-1
Answer:A
Ifweconsiderunitvectors^
iand^
jinthedirectionABandACrespectivelyanditsmagnitude 1
ABand 1
ACrespectively,
thenasperquestion,forcesalongABandACrespectivelyare
1
AB
^
iand 1
AC
^
j
∴TheirresultantalongAD =1
AB
^
i+1
AC
^
j
∴Magnitudeofresultantis
=1
AB
2+1
AC
2 = AC2+AB2
AB2+AC2[AC2+AB2=BC2]
=BC
AB .AC
( ) ( )
( ) ( )
( ) ( )
ΔABC ΔDBA
BC
AB =AC
AD⇒ BC
AB ×AC =1
AD
∴Therequiredmagnitudeofresultantbecomes 1
AD
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question207
If
a×
b×
c=
a×
b×
cwhere
a,
band
careanythreevectorssuch
that
a
b0,
b.
c0then
aand
care
[2006]
Options:
A.inclinedatanangleofπ
3betweenthem
B.inclinedatanangleofπ
6betweenthem
C.perpendicular
D.parallel
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question208
AbodyfallingfromrestundergravitypassesacertainpointP.Itwasat
adistanceof400mfromP,4spriortopassingthroughP.If
g=10m s2,thentheheightabovethepointPfromwherethebody
begantofallis
[2006]
Options:
A.720m
B.900m
C.320m
D.680m
( ) ( )
CA = (2a)^
i+2^
j;
CB = (1a)^
i6^
k
CA
CB
CA .
CB =0(2a)(1a) = 0
a=2,1
[ ]
(a×b) × c=a× (b×c),ab 0,b.c0
(a.c) . b (b.c)a = (a.c) . b (a.b) . c
(a.b) . c= (b.c)aac
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question209
Aparticlehastwovelocitiesofequalmagnitudeinclinedtoeachother
atanangleθ.Ifoneofthemishalved,theanglebetweentheotherand
theoriginalresultantvelocityisbisectedbythenewresultant.Thenθis
[2006]
Options:
A.90°
B.120°
C.45°
D.60°
Answer:B
Solution:
Weknowthath=1
2gt2andh+400 =1
2g(t+4)2
Subtracting,weget400 =8g +4gt
t=8sec
h=1
2×10 ×64 =320m
∴Requiredheight = 320 +400 =720m
Lettwovelocitiesuanduatanangleθtoeachothertheresultantisgivenby
R2=u2+u2+2u2cos θ = 2u2(1+cos θ)
R2=4u2cos2θ2orR=2u cos θ
2
Nowinsecondcase,thenewresultantAE (i.e.,R )bisects∠CAB,thereforeusinganglebisectortheoreminΔABC,we
get
AB
AC =BE
E C u
R=u2
u2R=u
-------------------------------------------------------------------------------------------------
Question210
IfCisthemidpointofABandPisanypointoutsideAB,then
[2005]
Options:
A.PA +PB =2PC
B.PA +PB =PC
C.PA +PB +2PC =0
D.PA +PB +PC =0
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question211
Leta,bandcbedistinctnon-negativenumbers.Ifthevectors
a^
i+a^
j+c^
k,^
i+^
kandc^
i+c^
j+b^
klieinaplane,thencis
[2005]
Options:
A.theGeometricMeanofaandb
B.theArithmeticMeanofaandb
C.equaltozero
D.theHarmonicMeanofaandb
2u cos θ
2=u
cos θ
2=1
2=cos 60°⇒ θ
2=60°
orθ=120°
PA +AP =0andPC +CP =0
PA +AC +CP =0........(i)
Similarly,PB +BC +CP =0......(ii)
Addingeqn.(i)and(ii),weget
PA +PB +AC +BC +2CP =0
SinceAC = BC&CP = PC
PA +PB 2PC =0
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question212
Let
a=^
i^
k,
b=x^
i+^
j+ (1x)^
kand
c=y^
i+x^
j+ (1+xy)^
k.Then
a,
b,
cdependson
[2005]
Options:
A.onlyy
B.onlyx
C.bothxandy
D.neitherxnory
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question213
If
a,
b,
carenoncoplanarvectorsandλisarealnumberthen
λ
a+
b λ2
b λ
c=
a
b+
c
bfor
[2005]
Options:
[ ]
[( ) ] [ ]
Vectora^
i+a^
j+c^
k,^
i+^
kandc^
i+c^
j+b^
karecoplanar
a a c
1 0 1
c c b
=0⇒c2=ab c= ab
cisG.M.ofaandb.
| |
Giventhat
a=^
i^
k,
b=x^
i+^
j+ (1x)^
kand
c=y^
i+x^
j+ (1+xy)^
k
a
b
c=
a.
b×
c=
1 0 1
x 1 1x
y x 1+xy
=1[1+xyx+x2]−[x2y]
=1y+x2x2+y=1
Hence
a
b
cisindependentofxandyboth.
[ ] ( ) | |
[ ]
A.exactlyonevalueofλ
B.novalueofλ
C.exactlythreevaluesofλ
D.exactlytwovaluesofλ
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question214
Foranyvector
a,thevalueof
a×^
i
2+
a×^
j
2+
a×^
k
2isequalto
[2005]
Options:
A.3
a2
B.
a2
C.2
a2
D.4
a2
Answer:C
Solution:
( ) ( ) ( )
Let
a=a1
^
i+a2
^
j+a3
^
k
b=b1
^
i+b2
^
j+b3
^
k
c=c1
^
i+c2
^
j+c3
^
kGiventhat λ
a+
b λ2
b λ
c =
a
b+
c
b
λ(a1+b1)λ(a2+b2)λ(a3+b3)
λ2b1λ2b2λ2b3
λc1λc2λc3
=
a1a2a3
b1+c1b2+c2b3+c3
b1b2b3
λ4
a1+b1a2+b2a3+b3
b1b2b3
c1c2c3
=
a1a2a3
b1+c1b2+c2b3+c3
b1b2b3
R1R1R2inlstdet.
andR2R2R3in2nddet.
λ4
a1a2a3
b1b2b3
c1c2c3
=
a1a2a3
c1c2c3
b1b2b3
λ4= 1
Henceλhasnorealvalues.
[( ) ] [ ]
| | | |
| | | |
| | | |
-------------------------------------------------------------------------------------------------
Question215
TheresultantRoftwoforcesactingonaparticleisatrightanglesto
oneofthemanditsmagnitudeisonethirdoftheotherforce.Theratio
oflargerforcetosmalleroneis:
[2005]
Options:
A.2:1
B.3 : 2
C.3:2
D.3 :22
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question216
AandBaretwolikeparallelforces.AcoupleofmomentH liesinthe
planeofAandBandiscontainedwiththem.TheresultantofAandB
aftercombiningisdisplacedthroughadistance
[2005]
Options:
A. 2H
AB
B. H
A+B
Let
a=x
i+y
j+z
k
a×
i=z
jy
k⇒
a×i|2=y2+z2
Similarly,
a×
j2=x2+z2and
a×
k2=x2+y2
Addingallaboveequation
a×
i2+
a×
j2+
a×
k2
=2(x2+y2+z2) = 2
a|2
|
| | | |
( ) ( ) ( )
|
AccordingtoquestionF = 3F cos θandF=3F sin θ
F = 22F
F:F::3:22
C. H
2(A+B)
D. H
AB
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question217
AparticleisprojectedfromapointOwithvelocityuatanangleof60°
withthehorizontal.Whenitismovinginadirectionatrightanglesto
itsdirectionatO,itsvelocitythenisgivenby
[2005]
Options:
A.u
3
B.u
2
C.2u
3
D. u
3
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question218
If
a,
b,
carenon-coplanarvectorsandlambdaisarealnumber,thenthe
LetAandBbedisplacedbyadistancexthenChangeinmomentof(A+B) = appliedmoments
(A+B) × x=H x=H
A+B
Asperquestionu cos 60° = v cos 30°
(ashorizontalcomponentofvelocityremainsthesame)
u.1
2=v.3
2orv=1
3u
vectors
a+2
b+3
c,λ
b+4
cand( 1)
carenoncoplanarfor
[2004]
Options:
A.novalueofλ
B.allexceptonevalueofλ
C.allexcepttwovaluesofλ
D.allvaluesofλ
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question219
Let
a,
band
cbethreenon-zerovectorssuchthatnotwooftheseare
collinear.Ifthevector
a+2
biscollinearwith
cand
b+3
ciscollinear
with
a(λbeingsomenon-zeroscalar)then
a+2
b+6
cequals
[2004]
Options:
A.0
B.λ
b
C.λ
c
D.λ
a
Answer:C
Solution:
Ifvectors
a+2
b+3
c,λ
b+4
cand( 1)
carecoplanarthen
1 2 3
0 λ 4
00 1
=0
λ( 1) = 0λ=0or1
2
∴Forcesarenoncoplanarforallλ,exceptλ=0,1
2
| |
Giventhat
a+2
biscollinearwith
cand
b+3
ciscollinearwith
a
Let
a+2
b=t
cand
b+3
c=s
a,wheretandsarescalars
a+2
b+6
c=t
c+6
c
= (t+6)
cusing
a+2
b=t
c
=λ
c,whereλ=t+6
[]
Question220
Let
u,
v,
wbesuchthat
u=1,
v=2,
w=3.Iftheprojection
valong
u
isequaltothatof
walong
uand
v,
wareperpendiculartoeachother
then
u
v+
wequals
[2004]
Options:
A.14
B.7
C.14
D.2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question221
Let
a,
band
cbenon-zerovectorssuchthat
a×
b×
c=1
3
b
c
a.Ifθ
istheacuteanglebetweenthevectors
band
c,thensin θequals
[2004]
Options:
A.22
3
B.2
3
C.2
3
D.1
3
| | | | | |
| |
( ) | | | |
Projectionof
valong
u=
v.
u
u
=
v.
u
projectionof
walong
u=
w.
u
u
=
w
u
Given
v.
u=
w.
u.......(1)
Also,
v.
w=0
v
w........(2)
Now
u
v+
w2
=
u|2+
v|2+
w|22
u.
v−2
v.
w+2
u.
w
=1+4+9+0[From(1)and(2)] = 14
u
v+
w= 14
| |
| |
[ ]
| |
| | |
| |
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question222
Ift1andt2arethetimesofflightoftwoparticleshavingthesameinitial
velocityuandrangeRonthehorizontal,thent1
2+t2
2isequalto
[2004]
Options:
A.1
B.4u2g2
C.u22g
D.u2g
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question223
Giventhat
a×
b×
c=1
3
b
c
a
Clearly
aand
barenoncollinear
a.
c
b
b.
c
a = 1
3
b
c
a
Comparingbothside.
a.
c=0and−
b.
c=1
3
b
c
cos θ =1
3
sin θ =11
9=22
3
[θisacuteanglebetween
band
c
( ) | | | |
( ) ( ) | | | |
| | | |
]
Forsamehorizontalrangetheanglesofprojectionmustbeαandπ
2α
t1=2u sin α
g....(i)
t2=
2u sin π
2α
g = 2u cos α
g....(ii)
Squaringandaddingeqn.(i)and(ii),
t1
2+t2
2=4u2
g2
( )
Avelocity1
4msisresolvedintotwocomponentsalongOAandOB
makingangles30°and45°respectivelywiththegivenvelocity.Thenthe
componentalongOBis
[2004]
Options:
A.1
8(√6 2)ms
B.1
4(√31)ms
C.1
4ms
D.1
8ms
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question224
ApaticlemovestowardseastfromapointAtoapointBattherateof4
km/handthentowardsnorthfromBtoCattherateof5km/hr.IfAB=
12kmandBC=5km,thenitsaveragespeedforitsjourneyfromAtoC
andresultantaveragevelocitydirectfromAtoCarerespectively
[2004]
Options:
A.13
9km hand17
9km h
B.13
4km hand17
4km h
C.17
9km hand13
9km h
D.17
4km hand13
4km h
Answer:D
Solution:
Givenv=1
4ms,componentalongOB
=v sin 30°
sin(45° + 30°) =
14 ×1
2
3+1
22
= 6 2
8
-------------------------------------------------------------------------------------------------
Question225
Threeforces
P,
Qand
RactingalongI A,I BandI C,whereI isthe
incentreofaΔABCareinequilibrium.Then
P:
Q:
Ris
[2004]
Options:
A.cosec A
2:cosec B
2:cosec C
2
B.sin A
2:sin B
2:sin C
2
C.sec A
2:sec B
2:sec C
2
D.cos A
2:cos B
2:cos C
2
Answer:D
Solution:
Solution:
TimetakenbytheparticleincompletejourneyT=12
4+5
5=4hr
∴Averagespeed = 12 +5
4=17
4
Averagevelocity = 122+52
4=13
4
LetIisincentreofΔABC.
I A,I B,I CarebisectorsoftheanglesA,BandC.
Now∠BI C =180 B
2C
2=90° + A
2etc
ApplyingLami'stheorematI
P
sin 90° + A
2
=Q
sin 90° + B
2
= R
sin 90° + C
2
P:Q:R=cos A
2:cos B
2:cos C
2
( ) ( ) ( )
Question226
InarightangleΔABC, A=90°andsidesa,b,carerespectively,
5cm,4cmand3cm.Ifaforce
Fhasmoments0,9and16inN cm.units
respectivelyaboutverticesA,BandC,thenmagnitudeof
Fis
[2004]
Options:
A.9
B.4
C.5
D.3
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question227
Withtwoforcesactingatpoint,themaximumaffectisobtainedwhen
theirresultantis4N .Iftheyactatrightangles,thentheirresultantis
3N .Thentheforcesare
[2004]
Options:
A. 2 +1
23N and 2 1
23N
( ) ( )
Since,themomentaboutAiszero,hence
FpassesthroughA.TakingAasorigin.Letthelineofactionofforce
Fbey=mx.(seefigure)
MomentaboutB=3m
1+m2
F=9.......(1)
| |
MomentaboutC=4
1+m2
F=16.
Dividing(1)by(2),weget
m=3
4
F=5N
| |
| |
B.(2+ 3)N and(2 3)N
C. 2 +1
22N and 2 1
22N
D.(2+ 2)N and(2 2)N
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question228
Aparticleisacteduponbyconstantforces4^
i+^
j3^
kand3^
i+^
j^
k
whichdisplaceitfromapoint^
i+2^
j+3^
ktothepoint5^
i+4^
j+^
k.The
workdoneinstandardunitsbytheforcesisgivenby
[2004]
Options:
A.15
B.30
C.25
D.40
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question229
ConsiderpointsA,B,CandDwithpositionvectors
7^
i4^
j+7^
k,^
i6^
j+10^
k,^
i3^
j+4^
kand5^
i^
j+5^
krespectively.Then
ABCDisa
( ) ( )
LetforcesbePandQ.thenP+Q=4....(1)
andP2+Q2=32....(2)
Solvingeqns.(1)and(2),wegettheforces
2+1
22Nand 21
22N
( ) ( )
Resultantofforces
F=4^
i+^
j3^
k+3^
i+^
j^
k
Displacement
d=5^
i+4^
j+^
k^
i+2^
j+3^
k = 4^
i+2^
j2^
k
∴ Workdone =
F.
d=28 +4+8=40
( )
[2003]
Options:
A.parallelogrambutnotarhombus
B.square
C.rhombus
D.None
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question230
If
aa21+a3
bb21+b3
cc21+c3
=0andvectors(1,a,a2),(1,b,b2)and(1,c,c2)are
non-coplanar,thentheproductabcequals
[2003]
Options:
A.0
B.2
C.-1
D.1
Answer:C
Solution:
Solution:
| |
GiventhatA= (7, 4,7), B= (1, 6,10), C= (−1, 3,4)
andD= (5, 1,5)
AB =(71)2+ (−4+6)2+ (710)2
= 36 +4+9=7
Similarly,BC =7,CD = 41,DA = 17
∴Noneoftheoptionsissatisfied.
Given
aa21+a3
bb21+b3
cc21+c3
=0
| |
-------------------------------------------------------------------------------------------------
Question231
Thevectors
AB =3^
i+4^
k&
AC =5^
i2^
j+4^
karethesidesofatriangle
ABC.ThelengthofthemedianthroughAis
[2003]
Options:
A.288
B.18
C.72
D.33
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question232
a,
b,
care3vectors,suchthat
a+
b+
c=0,
a=1,
b=2,
c=3,then
a.
b+
b.
c+
c.
aisequalto
| | | | | |
a a21
b b21
c c21
+
a a2a3
b b2b3
c c2c3
= 0
(1+abc)
1 a a2
1 b b2
1 c c2
=0
Giventhat(1,a,a2), (1,b,b2)and(1,c,c2)arenon-coplanar
1 a a2
1 b b2
1 c c2
0(givencondition)
1+abc =0abc = 1
| | | |
| |
| |
GiventhatADismedianofΔABC.
AD =(3+5)^
i+ (02)^
j+ (4+4)^
k
2 = 4i j+4k
|AD| = 16 +16 +1= 33
[2003]
Options:
A.1
B.0
C.-7
D.7
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question233
If
u,
vand
warethreenon-coplanarvectors,then
u+
v
w.
u
v×
v
wequals
[2003]
Options:
A.3
u.
v×
w
B.0
C.
u.
v×
w
D.
u.
w×
v
Answer:C
Solution:
( ) ( ) ( )
( )
Giventhat
a+
b+
c=0
a+
b+
c.
a+
b+
c=0
a|2+
b|2+
c|2+2
a.
b+
b.
c+
c.
a=0
1+4+9+2
a.
b+
b.
c+
c.
a=0
a.
b+
b.
c+
c.
a = 149
2= 7
( ) ( )
|| | ( )
( )
u+
v
w.
u
v×
v
w
=
u+
v
w.
u×
v
u×
w−
v×
v+
v×
w
=
u+
v
w.
u×
v−
u×
w+
v×
w
v×
v=0
=
u.
u×
v
u.
u×
w+
u.
v×
w+
v.
u×
v−
v.
u×
w+
v.
v×
w
w.
u×
v
+
w.
u×
w
w.
v×
w
Weknowthat
a,
a,
b=0
=
u.
v×
w
v.
u×
w−
w.
u×
v
=
u
v
w+
v
w
u
w
u
v =
u.
v×
w
( ) ( ) ( )
( ) ( )
( ) ( ) [ ]
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
[ ]
( ) ( ) ( )
[ ) ] [ ) ] [ ] ( )
Question234
AtetrahedronhasverticesatO(0,0,0), A(1,2,1)B(2,1,3)and
C(−1,1,2).ThentheanglebetweenthefacesOABandABCwillbe
[2003]
Options:
A.90°
B.cos119
35
C.cos117
31
D.30°
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question235
Let
u=^
i+^
j,
v=^
i^
jand
w=^
i+2^
j+3^
k.If^
nisaunitvectorsuchthat
u.^
n=0and
v.^
n=0,then
w.^
nisequalto
[2003]
Options:
A.3
B.0
C.1
D.2
Answer:A
( )
( )
| |
NormalvectorofthefaceOAB
=
OA ×
OB =
^
i^
j^
k
121
213
= 5^
i^
j3^
k
NormalvectorofthefaceABC
=
AB ×
AC =
^
i^
j^
k
112
211
= ^
i5^
j3k
Anglebetweenthefaces=anglebetweentheirnormals
cos θ =5+5+9
3535 =19
35orθ=cos119
35
| |
| |
| | ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question236
LetR1andR2respectivelybethemaximumrangesupanddownan
inclinedplaneandRbethemaximumrangeonthehorizontalplane.
ThenR1,R,R2arein
[2003]
Options:
A.H.P
B.A.G..P
C.A.P
D.G..P.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question237
Twoparticlesstartsimultaneouslyfromthesamepointandmovealong
twostraightlines,onewithuniformvelocity
uandtheotherfromrest
withuniformacceleration
f.Letαbetheanglebetweentheirdirections
ofmotion.Therelativevelocityofthesecondparticlew.r.t.thefirstis
Giventhat
u.^
n=0and
v.
n=0
nisperpendicularboth
uand
v,
^
n=
u×
v
u
v
^
n=
^
i^
j^
k
110
11 0
2× 2
=2^
k
2= k
ω.^
n= | (i+2j +3k) . (−k) | = | 3| = 3
| | | |
| |
| |
Letβbetheinclinationoftheplanetothehorizontalandubethevelocityofprojectionoftheprojectile
WehaveR1=u2
g(1+sin β)andR2=u2
g(1sin β)
Addingaboveequations
1
R1
+1
R2
=2g
u2or 1
R1
+1
R2
=2
R R=u2
g
R1,R,R2areinH.P.
[ ]
leastafteratime
[2003]
Options:
A.u cos α
f
B.u sin α
f
C.f cos α
u
D.u sin α
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question238
Twostonesareprojectedfromthetopofacliffhmetreshigh,withthe
samespeedu,soastohitthegroundatthesamespot.Ifoneofthe
stonesisprojectedhorizontallyandtheotherisprojectedhorizontally
andtheotherisprojectedatanangleθtothehorizontalthentan θ
equals
[2003]
Options:
A.u 2
gh
Letthetwovelocitiesbe
v1=u^
iand
v2= (f t cos α)^
i+ (f t sin α)^
j
∴Relativevelocityofsecondwithrespecttofirst
v=
v2
v1 = (f t cos α u)^
i+f t sin α ^
j
⇒
v2= (f t cos α u)2+ (f t sin α)2
=f2t2+u22uf t cos α
For
vtobeminandmax.weshouldhave
d|v|2
d t =02f 2t2uf cos α =0
t=u cos α
f
Alsod2|v|2
d t2=2f 2= +ve
| v|2andhence|v|isleastatthetimeu cos α
f
| |
| |
B. 2u
gh
C.2g u
h
D.2h u
g
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Giventhatthestoneprojectedhorizontally.Forhorizontalmotion,
Distance=speed×time⇒R=ut
andforverticalmotion
h=0×t+1
2gt2
t=2h
g
∴WegetR=u2h
g......(1)
Whenthestoneprojectedatanangleθ,forhorizontalandverticalmotions,wehave
R=u cos θ ×t....(2)
andh= u sin θ ×t+1
2gt2....(3)
Fromeqns.(1)and(2)weget
u2h
g=u cos θ ×t
⇒t=1
cos θ
2h
g
Puttingthevalueoftineq(3)weget
h= u sin θ
cos θ
2h
g+1
2g2h
gcos2θ
h= u2h
gtan θ +hsec2θ
h= u2h
gtan θ +htan2θ+h
tan2θu2
hg tan θ =0;∴tan θ =u2
hg
[ ]
Question239
Abodytravelsadistancesintseconds.Itstartsfromrestandendsat
rest.Inthefirstpartofthejourney,itmoveswithconstantacceleration
f andinthesecondpartwithconstantretardationr.Thevalueoftis
givenby
[2003]
Options:
A. 2s 1
f+1
r
B.2s 1
f+1
r
C. 2s
1
f+1
r
D.2s(f+r)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question240
( )
( )
LetthebodytravelsfromAtoBwithconstantaccelerationtandfromBtoCwithconstantretardationr.
IfAB =x,BC =y,timetakenfromAtoB=t1andtimetakenfromBtoC=t2,thens=x+yandt=t1+t2
ForthemotionfromAtoB
v2=u2+2f sv2=2f x(∵u=0)
x=v2
2f .......(1)
andv=u+f t v=f t1
t1=v
f........(2)
ForthemotionfromBtoC
v2=u2+2f s
0=v22ry⇒y=v2
2r.......(3)
andv=u+f t 0=vrt2
t2=v
r
Addingequations(1)and(3),weget
x+y=v2
2
1
f+1
r=s
Addingequations(2)and(4),weget
t1+t2=v1
f+1
r=t
t2
2s =
v21
f+1
r
2
2×v2
2
1
f+1
r
= 1
f+1
r
t=2s 1
f+1
r
[ ]
[ ]
[ ]
( )
( )
Theresultantofforces
Pand
Qis
R.If
Qisdoubledthen
Risdoubled.If
thedirectionof
Qisreversed,then
Risagaindoubled.ThenP2:Q2:R2is
[2003]
Options:
A.2:3:1
B.3:1:1
C.2:3:2
D.1:2:3.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question241
Acoupleisofmoment
Gandtheforceformingthecoupleis
P.If
Pis
turnedthrougharightanglethemomentofthecouplethusformedis
H
.Ifinstead,theforce
Pareturnedthroughanangleα,thenthemoment
ofcouplebecomes
[2003]
Options:
A.
Hsin α
Gcos α
B.
Gsin α
Hcos α
C.
Hsin α +
Gcos α
D.
Gsin α +
Hcos α
Answer:C
Solution:
R2=P2+Q2+2PQ cos θ....(1)
When
Qand
Raredoubled
4R2=P2+4Q2+4PQ cos θ....(2)
When
Qisreversedand
Risdoubled
4R2=P2+Q22PQ cos θ....(3)
Adding(1)and(3), 5R2=2P2+2Q2
2P2+2Q25R2=0....(4)
Applying(3) × 2+ (2), 12R2 = 3P2+6Q2
3P2+6Q212R2=0....(5)
From(4)and(5) P2
24 +30 =Q2
24 15 =R2
12 6
P2
6=Q2
9=R2
6orP2:Q2:R2=2:3:2
Solution:
-------------------------------------------------------------------------------------------------
Question242
Aparticleactedonbyconstantforces4^
i+^
j3^
kand3^
i+^
j^
kis
displacedfromthepoint^
i+2^
j3^
ktothepoint5^
i+4^
j+^
k.Thetotal
workdonebytheforcesis
[2003]
Options:
A.50units
B.20units
C.30units
D.40units.
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question243
If
a=5,
b=4,
c=3thuswhatwillbethevalueof
a.
b+
b.
c+
c.
a,
giventhat
a+
b+
c=0
[2002]
Options:
A.25
B.50
C.-25
D.-50
| | | | | | | |
Weknowthat
G=
r×
p;
G=
r
p sin θ
H=
r
p cos θ[∵sin(90° + θ) = cos θ]
G=
r
p sin θ.....(1)
H=
r
p cos θ.....(2)
x=
r
p sin(θ+α).....(3)
From(1), (2)&(3), x=
G cos α +
H sin α
| | | | | |
| | | | | |
| | | |
| | | |
| | | |
F=
F1+
F2 = 7i +2j 4k
d= PositonVectorof
B−PositionVectorof
A
=4i +2j 2k
W=
F.
d = 28 +4+8=40unit
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question244
Ifsdaa
a,
b,
carevectorssuchthat
a+
b+
c=0and
a=7,
b=5,
c=3thenanglebetweenvector
band
cis
[2002]
Options:
A.60°
B.30°
C.45°
D.90°
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question245
If
a×
b=
b×
c=
c×
athen
a+
b+
c=
[2002]
Options:
A.abc
B.-1
C.0
| | | | | |
Giventhat
a+
b+
c=0
⇒
a+
b+
c2=0
a|2+
b|2+
c|2+2
a.
b+
b.
c+
c.
a=025 +16 +9+2
a.
b+
b.
c+
c.
a=0
a.
b+
b.
c+
c.
a= 25
a.
b+
b.
c+
c.
a=25
| |
|| | ( ) ( )
( )
| |
Giventhat
a+
b+
c=0
b+
c=
a
b+
c|2=
a|2=52+32+2
b.
c=72
2
b
c cos θ =49 34 =15;
2×5×3 cos θ =15;
cos θ =12; θ=π
3=60°
| |
| | | |
D.2
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question246
a=3^
i5^
jand
b=6^
i+3^
jaretwovectorsand
cisavectorsuchthat
c=
a×
bthen
a:
b:
c
[2002]
Options:
A.34 : 45 : 39
B.34 : 45 :39
C.34:39:45
D.39:35:34
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question247
Ifthevectors
c,
a=x^
i+y^
j+z^
kand
b=^
jaresuchthat
a,
cand
bforma
righthandedsystemthen
cis:
[2002]
Options:
| | | | | |
Let
a+
b+
c=
rThen
a×
a+
b+
c=
a×
r
0+
a×
b+
a×
c=
a×
r
a×
b
c×
a=
a×
r⇒
a×
r=
0
a×
b=
c×
a
Similarly
b×
r=
0&
c×
r=
0
Abovethreeconditionscanbeholdifandonlyif
r=
0
( )
[ ]
Wehave
a×
b=
^
i^
j^
k
350
630
= 39^
k=
c
Also
a= 34,
b= 45,
c=39;
a:
b:
c = 34 : 45 :39
| |
| | | | | |
| | | | | |
A.z^
ix^
k
B.
0
C.y^
j
D.z^
i+x^
k
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question248
If
a,
b,
carevectorssuchthat
a
b
c=4then
a×
b
b×
c
c×
a=
[2002]
Options:
A.16
B.64
C.4
D.8
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question249
If
a=4,
b=2andtheanglebetween
aand
bisπ 6then
a×
b2is
equalto
[ ] [ ]
| | | | ( )
Giventhat
a,
c,
bformarighthandedsystem,
c=
b×
a=
^
i^
jk
0 1 0
x y z
=z^
ix^
k
| |
a×
b
b×
c
c×
a
a×
b.
b×
c×
c×
a∵
a×
b×
c=
a.
c
b−
a.
b
c
=
a×
b.
m.
a
c
m.
c
awhere
m=
b×
c
=
a×b.
c.
a.
b×
c =
a
b
c2=42=16
[ ]
( ) { ( ) ( ) } ( ) ( ) ( )
( ) { ( ) ( ) ) } ( )
{( ) }{ ( ) } [ ]
[2002]
Options:
A.48
B.16
C.
a
D.Noneofthese
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question250
Abeadofweightwcanslideonsmoothcircularwireinaverticalplane.
Thebeadisattachedbyalightthreadtothehighestpointofthewire
andinequilibrium,thethreadistautandmakeanangleθwiththe
verticalthentensionofthethreadandreactionofthewireonthebead
are
[2002]
Options:
A.T =w cos θ R =w tan θ
B.T =2w cos θ R =w
C.T =w R =w sin θ
D.T =w sin θ R =w cot θ
Answer:B
Solution:
Since,
a.
b=
a
b cos π
6 = 4×2×3
2=43.
Weknowthat,
a×
b2+
a.
b2=
a|2
b|2
a×
b2+48 =16 ×4
a×
b2=16
| | | |
( ) ( ) | |
( )
( )
Fromfigureangle T Q W =180 θ; RQW =;
RQT =180 θ
-------------------------------------------------------------------------------------------------
Question251
Thesumoftwoforcesis18Nandresultantwhosedirectionisatright
anglestothesmallerforceis12N.Themagnitudeofthetwoforcesare
[2002]
Options:
A.13,5
B.12,6
C.14,4
D.11,7
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
ApplyingLami'stheorematQ.
T
sin 2 θ =R
sin(180 θ) = W
sin(180 θ)
R=WandT=2W cos θ
GiventhatP+Q=18.......(1)
Weknowthat
P2+Q2+2PQ cos α =144......(2)
tan 90° = Q sin α
P+Q cos α
P+Q cos α =0......(3)
From(2)and(3),
Q2P2=144⇒(QP)(Q+P) = 144
QP=144
18 =8
From(1),Onsolving,wegetQ=13,P=5