D.[2,6]
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question75
If[x]denotesthegreatestinteger≤x,thenthesystemoflinear
equations
[sin θ]x+ [−cos θ]y=0
[cot θ]x+y=0
[April12,2019(II)]
Options:
A.haveinfinitelymanysolutionsifθ ∈π
2,2π
3andhasauniquesolutionifθ ∈π,7π
6.
B.hasauniquesolutionifθ ∈π
2,2π
3∪π,7π
6.
C.hasauniquesolutionifθ ∈π
2,2π
3andhaveinfinitelymanysolutionsifθ ∈π,7π
6
D.haveinfinitelymanysolutionsifθ ∈π
2,2π
3∪π,7π
6
Answer:A
Solution:
Solution:
( ) ( )
( ) ( )
( ) ( )
( ) ( )
Givenequationis,cos 2 x +α sin x =2α −71−2sin2x+α sin x =2α −7
2sin2x−α sin x + (2α −8) = 0
⇒sin x =α±α2−8(2α +8)
4
⇒sin x =α± (α−8)
4⇒sin x =α−4
4
[sin x =2(rejected )]
∵equationhassolution,then α−4
4∈ [−1,1]
⇒α∈ [2,6]
√
Accordingtothequestion,therearetwocases.
Case1:θ∈π
2,2π
3
Inthisinterval,[sin θ] = 0, [−cos θ] = 0and[cot θ] = −1Thenthesystemofequationswillbe;
0⋅x+0⋅y=0and−x+y=0
Whichhaveinfinitelymanysolutions.
Case2:θ∈π,7π
6
Inthisinterval,[sin θ] = −1and[−cos θ] = 0
Thenthesystemofequationswillbe;
−x+0⋅y=0and[cot θ]x+y=0
Clearly,x=0andy=0whichhasuniquesolution.
( )
( )