TrigonometricFunctions
Question1
Letthesetofalla∈Rsuchthattheequationcos2x+asinx=2a−
7hasasolutionbe[p,q]and
[27-Jan-2024Shift1]
Answer:48
Solution:
-------------------------------------------------------------------------------------------------
Question2
If2tan2θ−5secθ=1hasexactly7solutionsintheinterval[0,
nπ/2],fortheleastvalueofn∈Nthen isequalto:
[27-Jan-2024Shift2]
Options:
A.
B.
C.
D.
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question3
Ifα, isthesolutionof4cosθ+5sinθ=1,thenthevalue
oftanαis
[29-Jan-2024Shift1]
Options:
A.
B.
C.
D.
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question4
Thesumofthesolutionsx∈oftheequation
[29-Jan-2024Shift2]
Options:
A.
0
B.
1
C.
-1
D.
3
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question5
If2sin3x+sin2xcosx+4sinx−4=0hasexactly3solutionsinthe
interval[0,nπ/2],n∈N,thentherootsoftheequation
x2+nx+(n−3)=0belongto:
[30-Jan-2024Shift1]
Options:
A.
(0,∞)
B.
(−∞,0)
C.
D.
Z
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question6
Thenumberofsolutionsoftheequation4sin2x−4cos3x+9−4cosx=
0;x∈[−2π,2π]is:
[1-Feb-2024Shift2]
Options:
A.
1
B.
3
C.
2
D.
0
Answer:D
Solution:
Question7
Forα,β∈(0,π/2),let3sin(α+β)=2sin(α−β)andareal
numberkbesuchthattanα=ktanβ.Thenthevalueofkisequalto:
[30-Jan-2024Shift2]
Options:
A.
B.
-5
C.
2/3
D.
5
Answer:B
Solution:
Question8
[1-Feb-2024Shift1]
Options:
A.
C
B.
π−C
C.
2π−C
D.
π/2−C
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question9
Ifmandnrespectivelyarethenumbersofpositiveandnegativevalue
ofθintheinterval[−π,π]thatsatisfytheequation
cos 2 θ cos θ
2=cos 3 θ cos
2,thenmnisequalto________.
[25-Jan-2023Shift2]
Answer:25
Solution:
cos 2 θ cos θ
2=cos 3 θ cos
2
2 cos 2 θ cos θ
2=2 cos
2cos 3 θ
Question10
LetS = {θ [0,) : tan(π cos θ) + tan(πsin θ) = 0}.
Then
θSsin 2θ+π
4isequalto
[24-Jan-2023Shift2]
Answer:2
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question11
Letf (θ) = 3 sin 4
2θ+sin 4( +θ) 2(1sin 2)and
S=θ [0,π] : f(θ) = 3
2.If4β =
θSθ,thenf (β)isequalto
[29-Jan-2023Shift1]
Options:
A. 11
8
B. 5
4
( )
( ( ) )
{ }
cos
2+cos
2=cos 15θ
2+cos
2
cos 15θ
2=cos
2
15θ
2=2kπ ±
2
=2kπ or 10θ =2kπ
θ=2kπ
5
θ= π,
5,
5,
5,π
5,0,π
5,
5,
5,
5,π
mn=25
{ }
tan(π cos θ) + tan(πsin θ) = 0
tan(π cos θ) = tan(πsin θ)
tan(π cos θ) = tan(−πsin θ)
π cos θ = πsin θ
sin θ +cos θ =n where n I
possiblevaluesaren=0,1and−1because
2sin θ +cos θ 2
Nowitgivesθ0,π
2,
4,
4,
2,π
So
θS
sin 2θ+π
4=2(0) + 41
2=2
{ }
( ) ( )
C. 9
8
D. 3
2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question12
Thesetofallvaluesofλforwhichtheequation
cos22x 2sin 4x2cos2x=λ
[29-Jan-2023Shift2]
Options:
A.[−2, 1]
B. 2, 3
2
C. 1, 1
2
D. 3
2, 1
Answer:D
Solution:
[ ]
[ ]
[ ]
f(θ) = 3 sin 4
2θ+sin 4(3x +θ) 2(1sin 2)
S=θ [0,π] : f(θ) = 3
2
f(θ) = 3(cos4θ+sin 4θ) 2cos2
f(θ) = 3 1 1
2sin 2 2cos2
f(θ) = 33
2sin 2 2cos2θ
=3
21
2cos2 =3
21
2
1+cos 4 θ
2
f(θ) = 5
4cos 4 θ
4
f(θ) = sin
f(θ) = sin = 3
2
= + (−1)nπ
3
θ=
4+ (−1)nπ
12
θ=π
12,π
4π
12 ,π
2+π
12 ,
4π
12
=π
4+π
2+
4=
2
β=
8f(β) = 5
4
cos
2
4=5
4
( ( ) )
{ }
( )
( )
( ) ( ) ( )
Solution:
-------------------------------------------------------------------------------------------------
Question13
Iftan 15+1
tan 75+1
tan 105+tan 195=2athenthevalueof a +1
ais:
[30-Jan-2023Shift1]
Options:
A.4
B.4 23
C.2
D.5 3
23
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question14
Ifthesolutionoftheequation
( )
λ=cos22x 2sin 4x2cos2x
convertallinto cos x .
λ= (2cos2x1)22(1cos2x)22cos2x
=4cos4x4cos2x+12(12cos2x+cos4x)
2cos2x
=2cos4x2cos2x+12
=2cos4x2cos2x1
=2 cos4xcos2x1
2
=2 cos2x1
2
23
4
λmax =21
43
4=2× 2
4= 1 (maxValue)
λmin =2 0 3
4= 3
2(MinimumValue)
So,Range = 3
2, 1
[ ]
[ ( ) ]
[ ] ( )
[ ]
[ ]
Option(1)
tan 15=2 3
1
tan 75=cot 75=2 3
1
tan 105=cot(105) = cot 75= 32
tan 195=tan 15=2 3
2(2 3) = 2a a=2 3
a+1
a=4
logcos x cot x +4logsin x tan x =1,x0,π
2,issin 1α+ β
2,whereα,β
areintegers,thenα +βisequalto:
[30-Jan-2023Shift1]
Options:
A.3
B.5
C.6
D.4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question15
Thevalueoftan 9tan 27tan 63+tan 81is_______:
[6-Apr-2023shift2]
Answer:4
Solution:
Solution:
-------------------------------------------------------------------------------------------------
( ) ( )
logcos x cot x +4logsin x tan x =1
ln cos x ln s i n x
ln cos x +4ln s i n x ln cos x
ln s i n x =1
(ln s i n x)24(ln s i n x)(ln cos x) + 4(ln cos x)2=1
ln s i n x =2 ln cos x
sin 2x+sin x 1=0sin x =1+ 5
2
α+β=4
Correctoption(4)
(tan 9+cot 9) (tan 27+cot 27)
1
sin 9cos 91
sin 27cos 27
2
sin 182
sin 54
2(4)
512(4)
(√5+1)
8(√5+1)
48(√51)
4
2[(√5+1) (√51)]
=4
Question16
Thevalueof36(4cos291)(4cos2271)(4cos2811)(4cos22431)
is
[8-Apr-2023shift2]
Options:
A.27
B.54
C.18
D.36
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question17
96 cos π
33 cos
33 cos
33 cos
33 cos 16π
33 isequalto:
[10-Apr-2023shift1]
Options:
A.4
B.2
C.3
D.1
Answer:C
Solution:
Solution:
4cos2θ1=4(1sin 2θ) 1=34sin 2θ=sin
sin θ
sogivenexpressioncanbewrittenas
36×sin 27
sin 9×sin 81
sin 27×sin 243
sin 81×sin 729
sin 243
36×sin 729
sin 9=36
96 cos π
33 cos
33 cos 22π
33 cos 23π
33 cos 24π
33
cos A cos 2 A cos 22A...cos 2n1A=sin (2nA)
2nsin A
HereA=π
33,n=5
-------------------------------------------------------------------------------------------------
Question18
LetS =x π
2,π
2:91tan2x+9tan2x=10 andb =2
xS tan
x
3,then
1
6(β14)2isequalto
[10-Apr-2023shift2]
Options:
A.16
B.32
C.8
D.64
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question19
Thenumberofsolutionsof|cos x| = sin x,suchthat x4πis:
{ ( ) } ( )
=
96sin 25π
33
25sin π
33
=
96sin 32π
33
32sin π
33
=
3sin π π
33
sin π
33
=3
( )
( )
( )
( )
( )
( )
Let9tan2x=P
9
P+P=10
P210P +9=0
(P9)(P1) = 0
P=1,9
9tan2x=1,9tan2x=9
tan2x=0,tan2x=1
x=0, ± π
4x π
2,p
2
β=tan2(0) + tan2+π
12 +tan2π
12
=0+2(tan 15)2
2(2 3)2
2(743)
Than 1
6(14 8314)2=32
( )
( ) ( )
[25-Jul-2022-Shift-1]
Options:
A.4
B.6
C.8
D.12
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question20
LetS =θ [0,] : 82sin2θ+82cos2θ=16 .Then
n(s) +
θSsec π
4+ cosec π
4+ isequalto:
[26-Jul-2022-Shift-1]
Options:
A.0
B.2
C.4
D.12
Answer:C
Solution:
Solution:
{ }
( ( ) ( ) )
Periodof|cos x| = π
Andperiodofsin x =
Graphofsin xand|cos x|cutseachotherattwopointsAandBin[0,]
So,in[−,],total4similargraphwillbepresentandgraphofsin xand|cos x|willcut4×2=8times.
∴Totalpossiblesolutions = 8
S=θ [0,] : 82sin2θ+82cos2θ=16
NowapplyAM≥GMfor82sin2θ,82cos2θ
{ }
-------------------------------------------------------------------------------------------------
Question21
Ifthesumofsolutionsofthesystemofequations2sin2θcos 2 θ =0
and2cos2θ+3 sin θ =0intheinterval[0,]iskπ,thenkisequalto
________.
[26-Jul-2022-Shift-2]
Answer:3
Solution:
82sin2θ+82cos2θ
282sin2θ+2cos2θ
1
2
88
82sin2θ=82cos2θ
or sin2θ=cos2θ
θ=π
4,
4,
4,
4
n(S) +
θS
sec π
4+ cos e c π
4+
4+
θS
2
2 sin π
4+ cos π
4+
=4+
θS
2
sin π
2+
=4+2
θS
cosec π
2+
=4+2 cosec π
2+π cosec π
2+ +cosec π
2+ +cosec π
2+
=4+2cosec π
2cos e c π
2cos e c π
2cosec π
2
=42(4)
=48
= 4
( )
( ) ( )
( ) ( )
( ) ( )
[ ( ) ( ) ( ) ( ) ]
[ ]
Equation(1)2sin2θ=12sin2θ
sin2θ=1
4
sin θ = ± 1
2
θ=π
6,
6,
6,11π
6
Equation(2)2cos2θ+3 sin θ =0
2sin2θ3 sin θ 2=0
2sin2θ4 sin θ +sin θ 2=0
(sin θ 2)(2 sin θ +1) = 0
sin θ =1
2
θ=
6,11π
6
∴Commonsolutions =
6;11π
6
Sumofsolutions = +11π
6=18π
6=
k=3
Question22
LetS = {θ (0,) : 7cos2θ3sin2θ2cos2 =2}.Then,thesumof
rootsofalltheequationsx22(tan2θ+cot2θ)x+6sin2θ=0,θS,is
_______.
[29-Jul-2022-Shift-1]
Answer:16
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question23
2 sin π
22 sin
22 sin
22 sin
22 sin
22 isequalto:
[25-Jul-2022-Shift-2]
Options:
A. 3
16
B. 1
16
C. 1
32
D. 9
32
Answer:B
Solution:
Solution:
( ) ( ) ( ) ( ) ( )
7cos2θ3sin2θ2cos2 =2
41+cos 2 θ
2+3 cos 2 θ 2cos2 =2
2+5cos2θ2cos2 =2
cos 2 θ =0 or 5
2(rejected )
cos 2 θ =0=1tan2θ
1+tan2θtan2θ=1
Sumofroots =2(tan2θ+cot2θ) = 2×2=4
Butastan θ = ±1for π
4,
4,
4,
4intheinterval(0,)
∴Fourequationswillbeformed
Hencesumofrootsofalltheequations = 4×4=16.
( )
2 sin π
22 sin
22 sin
22 sin
22 sin
22
-------------------------------------------------------------------------------------------------
Question24
LetS =θ0,π
2:
m=1
9sec θ + (m1)π
6sec θ +
6= 8
3.
Then
[27-Jul-2022-Shift-2]
Options:
A.S =π
12
B.S =
3
C.
θS
θ=π
2
D.
θS
θ=
4
Answer:C
Solution:
Solution:
{( ) ( ) ( ) }
{ }
{ }
=2 sin 11π 10π
22 sin 11π
22 sin 11π
22 sin 11π
22 sin 11π
22
=2 cos π
11 cos
11 cos
11 cos
11 cos
11
=
2 sin 32π
11
25sin π
11
=1
16
( ) ( ) ( ) ( ) ( )
s=00,π
2:
9
m=1
sec θ + (m1)π
6sec θ +
6= 8
3.
9
m=1
1
cos θ + (m1)π
6
cos θ +mπ
6
1
sin π
6
9
m=1
sin θ +
6θ+ (m1)π
6
cos θ + (m1)π
6cos θ +π
6
=2
9
m=1
tan θ +
6tan θ + (m1)π
6
Now,
m=1 2 tan θ +π
6tan(θ)
m=2 2 tan θ +
6tan θ +π
6
.
.
.
m=9 2 tan θ +
6tan θ +8π
6
= 2 tan θ +
2tan θ =8
3
{( ) ( ) ( ) }
( ) ( )
( )
[ ( ) ( ) ]
( ) ( )
[ ( ) ( ) ]
[ ( ) ]
[ ( ) ( ) ]
[ ( ) ( ) ]
[ ( ) ]
-------------------------------------------------------------------------------------------------
Question25
LetS = π,π
2 π
2, π
4,
4,π
4.Thenthenumberofelementsin
thesetA= {θS:tan θ(1+ 5tan()) = 5tan()}is_______.
[28-Jul-2022-Shift-2]
Answer:5
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question26
LetS =θ [−π,π] ± π
2:sin θ tan θ +tan θ =sin 2 θ .
IfT =
θScos 2 θ,thenT +n(S)isequalto:
[24-Jun-2022-Shift-1]
Options:
A.7 + 3
[ ) { }
{ { } }
= 2[cot θ +tan θ] = 8
3
= 2×2
2sinθ cos θ =8
3
=1
sin2θ =2
3
sin2θ =3
2
=π
3
=
3
θ=π
6
θ=π
3
θi=π
6+π
3=π
2
Lettan α = 5
tan θ =tan α tan 2 θ
1+tan α tan 2 θ
tan θ =tan(α)
α = +θ
=α
θ=α
3
3;nZ
Ifθ [−π,π2]thenn=0,1,2,3,4areacceptable
5solutions.
B.9
C.8 + 3
D.10
Answer:B
-------------------------------------------------------------------------------------------------
Question27
Thenumberofvaluesofxintheinterval π
4,
4forwhich
14cosec2x2sin2x=21 4cos2xholds,is____
[25-Jun-2022-Shift-1]
Answer:4
Solution:
( )
Question28
Thenumberofelementsintheset
S= {θ [−,] : 3cos2 +6 cos 2 θ 10cos2θ+5=0}is
[29-Jun-2022-Shift-1]
Answer:32
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question29
Thenumberofsolutionsoftheequation
cos2θ+ 2=0inRisequalto
[29-Jun-2022-Shift-1]
Answer:1
Solution:
Solution:
3cos2 +6 cos 2 θ 10cos2θ+5=0
3cos2 +6 cos 2 θ 5(1+cos 2 θ) + 5=0
3cos2 +cos 2 θ =0
Cos 2 θ =0 OR cos 2 θ = 13
θ [−,]
= (2n +1) π
2
θ= ±π4. ± 4....... ± 15π 4
Similarlycos 2 θ = 13gives16solution
Given,
cos2θ+ 2=0
+ 2=cos2θ
+ 2=1+cos 2 θ
2
+22=1+cos 2 θ =y (Assume)
y= +22 and
y=1+cos 2 θ
Fory=1+cos 2 θ
whenθ=0,y=1+1=2
whenθ=π
4,y=1+cos π
2=1
-------------------------------------------------------------------------------------------------
Question30
Thenumberofsolutionsoftheequationsin x =cos2xintheinterval
(0,10)is____
[29-Jun-2022-Shift-2]
Answer:4
Solution:
θ=π
2,y=1+cos π =11=0
Fory= +22
whenθ=0,y=22
whenθ=π
2,y= +22
=2(π+ 2)
=2(3.14 +1.41)
=2(4.55)
=9.1
whenθ= π
2,y= +22
=2(−π+ 2)
=2(−3.14 +1.41)
= 3.46
∴Twographcut'satonlyonepointsoonesolutionpossible.
Question31
Thenumberofsolutionsoftheequation
cos x +π
3cos π
3x=1
4cos22x,x [−,]is:
[24-Jun-2022-Shift-2]
Options:
A.8
B.5
C.6
D.7
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question32
Thevalueof2 sin(12) sin(72)is:
[25-Jun-2022-Shift-2]
Options:
A. 5(1 3)
4
B. 1 5
8
C. 3(1 5)
2
D. 3(1 5)
4
Answer:D
( ) ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question33
Ifsin2(10)sin(20)sin(40)sin(50)sin(70) = α1
16 sin(10),then
16 +α1isequalto____
[26-Jun-2022-Shift-1]
Answer:80
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question34
16 sin(20)sin(40)sin(80)isequalto:
[26-Jun-2022-Shift-2]
2 sin 12sin 72
=sin 12+ (−2 cos 42sin 30)
=sin 12cos 42
=sin 12sin 48
=2 sin 18cos 30
= 251
43
2
=3(1 5)
4
( )
Options:
A.3
B.23
C.3
D.43
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question35
Thevalueofcos
7+cos
7+cos
7isequalto:
[27-Jun-2022-Shift-1]
Options:
A.1
B.1
2
C.1
3
D.1
4
Answer:B
Solution:
Solution:
( ) ( ) ( )
cos
7+cos
7+cos
7 =
sin 3 π
7
sin π
7
cos
7+
7
2
=
sin
7cos
7
sin π
7
=
2 sin
7cos
7
2 sin π
7
( ) ( )
( ) ( )
( )
-------------------------------------------------------------------------------------------------
Question36
α=sin 36isarootofwhichofthefollowingequation?
[27-Jun-2022-Shift-2]
Options:
A.16x410x25=0
B.16x4+20x25=0
C.16x420x2+5=0
D.16x410x2+5=0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question37
Ifcot α =1andsec β = 5
3,whereπ <α<
2and π
2<β<π,thenthe
valueoftan(α+β)andthequadrantinwhichα +βlies,respectivelyare
:
[28-Jun-2022-Shift-2]
Options:
A.1
7andIV th quadrant
B.7andI st quadrant
C.7andI V th quadrant
D. 1
7andI st quadrant
Answer:A
Solution:
=
sin
7
2 sin π
7
=
sin π
7
2 sin π
7
=1
2
( )
α=sin 36=x(say)
x=10 25
4
16x2=10 25
(8x25)2=5
16x480x2+20 =0
4x420x2+5=0
Solution:
-------------------------------------------------------------------------------------------------
Question38
cosec 18°isarootoftheequation
[31Aug2021Shift1]
Options:
A.x2+2x 4=0
B.4x2+2x 1=0
C.x22x +4=0
D.x22x 4=0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question39
Thevalueof
2 sin π
8sin
8sin
8sin
8sin
8sin
8is
[26Aug2021Shift2]
Options:
A. 1
42
( ) ( ) ( ) ( ) ( ) ( )
cot α =1,απ,
2
thentan α =1
andsecβ = 5
3,βπ
2,π
thentan β = 4
3
tan(α+β) = tan α +tan β
1tan α tan β
=
14
3
1+4
3
= 1
7
α+β
2, i.e.fourthquadrant
( )
( )
( )
cosec 18° = 1
sin 18°=4
51= 5+1
Ifx= 5+1,then
(x1)2=5
x22x 4=0
B.1
4
C.1
8
D. 1
82
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question40
Ifsin θ +cos θ =1
2,then16(sin() + cos() + sin())isequalto:
[27Jul2021Shift1]
Options:
A.23
B.27
C.23
D.27
Answer:C
Solution:
Solution:
2 sin π
8sin
8sin
8sin
8sin
8sin
8
=2 sin π
8sin
8sin
8sin π
8sin π
8sin π π
8
=2 sin π
8sin
8sin
8sin
8sin
8sin π
8
=2sin2π
8sin2
8sin2
82sin2π
8
1
2
2sin2π
2π
8
=2sin2π
8×1
2×cos2π
8=sin2π
8cos2π
8
=1
42 sin π
8cos π
8
21
4sin2π
4=1
4
1
2
2=1
8
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
sin θ +cos θ =1
2
sin2θ+cos2θ+2 sin θ cos θ =1
4
sin 2 θ = 3
4
Now:
cos 4 θ =12sin2
=123
4
2
=12×9
16 = 1
8
sin 6 θ =3 sin 2 θ 4sin3
( )
-------------------------------------------------------------------------------------------------
Question41
Thevalueofcot π
24is:
[25Jul2021Shift2]
Options:
A.2+ 3+2 6
B.2+ 3+2+ 6
C.2 32+ 6
D.32 3 6
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question42
If15sin4α+10cos4α=6,forsomeα R,thenthevalueof
27sec6α+8cosec6αisequalto
[18Mar2021Shift2]
Options:
A.350
= (34sin2) . sin 2 θ
=349
16 . 3
4
3
4× 3
4 = 9
16
16[sin 2 θ +cos 4 θ +sin 6 θ]
16 3
41
89
16 = 23
[ ( ) ] ( )
[ ] ( )
( )
cot θ =1+cos 2 θ
sin 2 θ =
1+3+1
22
31
22
θ=π
24
cot π
24 =
1+3+1
22
31
22
=(22+ 3+1)
(√31)×(√3+1)
(√3+1)
=26+22+3+ 3+ 3+1
2
= 6+ 2+ 3+2
( )
( )
( ) ( )
( )
B.500
C.400
D.250
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question43
Ifforx 0,π
2,log10 sin x +log10 cos x = 1and
log10(sin x +cos x) = 1
2(log10n1), n>0,thenthevalueofnisequalto
[16Mar2021Shift1]
Options:
A.20
B.12
C.9
D.16
Answer:B
Solution:
Solution:
( )
Given,15sin4α+10cos4α=6
15sin4α+10cos4α=6(sin2α+cos2α)2
15sin4α+10cos4α=6(sin4α+cos4α+2sin2αcos2α)
9sin4α+4cos4α12sin2αcos2α=0
(3sin2α2cos2α)2=0
3sin2α2cos2α=0
3sin2α=2cos2α
tan2α=2
3
cot2α=32
Now,
27sec6α+8cosec6α=27(sec2α)3+8(cosec2α)3
=27(1+tan2α)3+8(+cot2α)3
=27 1 +2
3
3+8 1 +3
2
3=250
( ) ( )
log10 sin x +log10 cos x = 1,x (0,π/2)
log10(sin x cos x) = 1
sin x cos x =101=1/10
log10(sin x +cos x) = 1/2(log10n1), n>0
2log10(sin x +cos x) = (log10nlog1010)
log10(sin x +cos x)2=log10(n/10)
(sin x +cos x)2=n/10
-------------------------------------------------------------------------------------------------
Question44
If0 <a,b<1andtan1a+tan1b=π
4,thenthevalueof
(a+b) a2+b2
2+a3+b3
3a4+b4
4+ ...is
[26Feb2021Shift2]
Options:
A.loge2
B.e21
C.e
D.loge
e
2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question45
Allpossiblevaluesofθ [0,]forwhichsin 2 θ +tan 2 θ >0liein
[25Feb2021Shift1]
Options:
A. 0,π
2π,
2
( ) ( ) ( )
( )
( ) ( )
sin2x+cos2x+2 sin x cos x =n
10
1+2(1/10) = n/10 12/10 =n/10
n=12
Given,tan1a+tan1b=π
4
tan1a+b
1ab =π
4
a+b
1ab =tan π
4=1
a+b=1ab
(1+a)(1+b) = 2...(i)
Now,(a+b) a2+b2
2+a3+b3
3a4+b4
4+ ...
=aa2
2+a3
3a4
4+ ... + bb2
2+b3
3b4
4+ ...
=loge(1+a) + loge(1+b) [ Usingexpansionofloge(1+x) ]
=loge(1+a)(1+b) [∴log a +log b =log a b]
=loge2[useEq.(i)]
[ ]
( ) ( ) ( )
[ ] [ ]
B. 0,π
2π
2,
4π,
6
C. 0,π
4π
2,
4
2,11π
6
D. 0,π
4π
2,
4π,
4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question46
If0 <x,y<πandcos x +cos y cos(x+y) = 3
2,thensin x +cos yisequal
to
[25Feb2021Shift2]
Options:
A. 1
2
B. 3
2
C. 1 3
2
D. 1+ 3
2
Answer:D
Solution:
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
sin 2 θ +tan 2 θ >0
sin 2 θ +sin 2 θ
cos 2 θ >0
sin 2 θ 1 +1
cos 2 θ >0
sin 2 θ cos 2 θ +1
cos 2 θ >0
tan 2 θ(2cos2θ) > 0
cos 2 θ 0
12sin2θ0
sin θ ± 1
2
Now,tan 2 θ(1+cos 2 θ) > 0
tan 2 θ >0as1+cos 2 θ >0
0,π
2π,
2,
2,
2
θ0,π
4π
2,
4π,
4
2,
4
Since,sin θ ± 1
2
( )
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
]
Solution:
-------------------------------------------------------------------------------------------------
Question47
Ifnisthenumberofsolutionsoftheequation
2 cos x 4 sin π
4+x sin π
4x1 =1,x [0,π]andSisthesumof
allthesesolutions,thentheorderedpair(n,S)is
[1Sep2021Shift2]
Options:
A. 3,13π
9
B. 2,
3
C. 2,
9
D. 3,
3
Answer:A
Solution:
Solution:
( ( ) ( ) )
( )
( )
( )
( )
Given,cos x +cos y cos(x+y) = 3
2
2 cos x+y
2cos xy
22cos2x+y
21=3
2[Useformula,
cos a +cos b =2 cos a+b
2cos ab
2
cos 2 x =2cos2x1]
2 cos x+y
2cos xy
22cos2x+y
2
=3
21=1
2
4 cos x+y
2cos xy
24cos2x+y
2
=1
2×2=1=cos2(xy)
2+sin2(xy)
2
cos xy
22 cos x+y
2
2+sin2xy
2=0
sin xy
2=0andcos xy
22 cos x+y
2=0
x=yandcos 0 2 cos x =0
Gives,cos x =1
2=cos y
sin x =1cos2x=11
4=3
2
sin x +cos y =3
2+1
2=1+ 3
2
( ) ( ) [ ( ) ]
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
[ ( ) ( ) ] ( )
( ) ( ) ( )
2 cos x 4 sin π
4+x sin π
4x1
⇒2 cos x 2 cos(2x) 2 cos π
21 = 1
⇒2 cos x(4cos2x3) = 1
( ( ) ( ) )
( ( ) )
-------------------------------------------------------------------------------------------------
Question48
Thenumberofsolutionsoftheequation32tan2x+32sec2x=81,0xπ
4
is
[31Aug2021Shift2]
Options:
A.3
B.1
C.0
D.2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question49
SectionB:NumericalTypeQuestions
LetSbethesumofallsolutions(inradians)oftheequation
sin4θ+cos4θsin θ cos θ =0in[0,].Then,85
πisequalto
[27Aug2021Shift2]
Answer:56
⇒cos 3 x =1
2
⇒3x =π
3,
3,
3
⇒x=π
9,
9,
9
Numberofsolutions=n=3
Sumofsolutions = S=13π
9
32tan2x+32sec2x=81
32tan2x+321+tan2x=81
33 ×32tan2x=81
32tan2x=27
11
tan2x=ln32
27
11
tan x =ln32
27
11 (0,1)
⇒Onesolutionin 0,π
4
( )
( )
[ ]
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question50
Thesumofsolutionsoftheequation cos x
1+sin x
= | tan 2 x ,x π
2,π
2π
4, π
4is
[26Aug2021Shift1]
Options:
A.11π
30
B. π
10
C.
30
D.π
15
Answer:A
Solution:
Solution:
| ( ) { }
sin4θ+cos4θsin θ cos θ =0in[0,]
12sin2θcos2θsin θ cos θ =0
2sin2 sin 2 θ =0
sin2 +sin 2 θ 2=0
(sin 2 θ +2)(sin 2 θ 1) = 0
sin 2 θ =1, [0,]
θ=π
4,
4,
4,13π
4
SumofsolutionsS=28π
4
Then,8S
π=8
π×28π
4=56
Wehave,cos x
1=tan 2 x
cos2x
2sin2x
2
cos2x
2+sin2x
2+2 cos x
2sin x
2
=tan 2 x
cos x
2sin x
2cos x
2+sin x
2
cos x
2+sin x
2
2=tan 2 x
1tan x
2
1+tan x
2
=tan 2 x
tan π
4x
2=tan 2 x
tan2π
4x
2=tan22x
| |
( ) ( ) | |
[ ( ) ( ) ] [ ]
( ) | |
| |
( ) | |
( )
-------------------------------------------------------------------------------------------------
Question51
Thenumberofsolutionsofsin7x+cos7x=1,x [0,]isequalto
[22Jul2021Shift2]
Options:
A.11
B.7
C.5
D.9
Answer:C
Solution:
Solution:
2x = ±π
4x
2
2x = +π
4x
2
or2x = π
4x
2
5x
2=n+1
4π
or3x
2=n1
4π
⇒π
2<2
5n+1
4π<π
2
orπ
2<2
3n1
4π<π
2
5
4<n+1
4<5
4
or3
4<n1
4<3
4
6
4<n<1
or1
2<n<1
n= 1,0
orn=0
Whenn= 1,x=3
10 π
orwhenn=0,x= π
6
n=0,x=1
10 π
∴Requiredsum = 3
10 π+1
10 π+1
6π=11
30 π
( )
( )
( )
( )
( )
( )
( )
( )
( ) ( ) ( ) ( )
sin7xsin2xλ1.......(1)
andcos7xcos2x1........(2)
alsosin2x+cos2x=1
⇒equalitymustholdfor(1)&(2)
sin7x=sin2x&cos7=cos2x
sin x =0&cos x =1
or
cos x =0& sin x =1
x=0,,,π
2,
2
-------------------------------------------------------------------------------------------------
Question52
Letα =max
xR
{82 sin 3 x .44 cos 3 x}andbeta =min
xR
{82 sin 3 x .44 cos 3 x}.If
8x2+bx +c=0isaquadraticequationwhoserootsareα15and
β15,thenthevalueofc bisequalto:
[27Jul2021Shift2]
Options:
A.42
B.47
C.43
D.50
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question53
Thenumberofsolutionsoftheequation|cot x| = cot x +1
sin xinthe
interval[0,]is
[18Mar2021Shift1]
Answer:1
Solution:
5solutions
α=max{82 sin 3 x .44 cos 3 x}
=max{26 sin 3 x .28 cos 3 x}
=max{26 sin 3 x +8 cos 3 x}
andβ=min{82 sin 3 x .44 cos 3 x} = min{26 sin 3 x +8 cos 3 x}
Nowrangeof6 sin 3 x +8 cos 3 x
= 62+82, + 62+82= [−10,10]
α=210&β =210
So,α15=22=4
β15=22=14
quadratic8x2+bx +c=0,cb=
8× [(productofroots] + (sumofroots)
=8×4×1
4+4+1
4 = 8×21
4=42
[ ]
[ ] [ ]
-------------------------------------------------------------------------------------------------
Question54
Thenumberofsolutionsoftheequationx +2 tan x =π
2intheinterval
[0,]is
[17Mar2021Shift2]
Options:
A.3
B.4
C.2
D.5
Answer:A
Solution:
Solution:
Given,|cot x| = cot x +1
sin x....(i)
Ifcot x >0,then|cot x| = cot x
FromEq.(i), cot x =cot x +1
sin x
1
sin x =0 (notpossible)
Ifcot x <0,then|cot x| = cot x
FromEq.(ii), cot x =cot x +1
sin x
2 cot x +1
sin x =02 cos x = 1
x=
3or
3
Here,x=
3rejectedbecause
3∈thirdquadrantandinthirdquadrantcot xispositive.Since,weconsidered
cot x <0.∴x=/3istheonlyonesolution.
Given,x+2 tan x =π
2
2 tan x =π
2xtan x =π
4x
2
tan x = 1
2x+π
4...(i)
ApproachInthistypeofproblemsolving,graphicalapproachisbestbecausewehavetofindonlynumberofsolutions,
notthesolution(i.e.notthevalue(s)ofx).
ConceptTofindthenumberofsolution(s)forEq.(i),firstofall,lety=tan x...(ii)andy=1
2x+π
4...(iii)andthen
drawthegraphofEqs.(ii)and(iii).
Now,totalnumberofsolution(s)=Totalnumberofpoint(s)ofintersectionofthegraph(ii)and(iii).
( )
( )
-------------------------------------------------------------------------------------------------
Question55
Thenumberofrootsoftheequation,(81)sin2x+ (81)cos2x=30inthe
interval[0,π]isequalto
[16Mar2021Shift1]
Options:
A.3
B.4
C.8
D.2
Answer:B
Solution:
Solution:
y= 1
2x+π
4intersectsy=tan xatthreedistinctpointsin[0,].
∴Totalnumberofsolutions = 3
Given,81sin2x+81cos2x=30
81sin2x+81(1sin2x)=30
81sin2x+81
81sin2x=30
Let81sin2x=y.
∴y+81
y=30
y230y +81 =0
(y27)(y3) = 0
y=3ory=27
81sin2x=3or81sin2x=27
34sin2x=3or34sin2x=33
4sin2x=1or4sin2x=3
sin2x=1/4orsin2x=34
sin2x=sin2(π/6)orsin2x=sin2(π/3)
x= ±π/6orx= ±π/3
From[0,π],
x=π/6,/6orx=π/3,/3
Hence,thetotalnumberofsolutions = 4
-------------------------------------------------------------------------------------------------
Question56
If3(cos2x) = (√31)cos x +1,thenumberofsolutionsofthegiven
equationwhenx 0,π
2is..........
[26Feb2021Shift1]
Answer:1
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question57
Thenumberofintegralvaluesofkforwhichtheequation
3 sin x +4 cos x =k+1hasasolution,k Ris..........
[26Feb2021Shift1]
Answer:11
Solution:
Solution:
[ ]
Given,√3cos2x= (√31)cos x +1,x [0,π2]
Letcos x =t,then
3t2= (√31)t+1
3t2 3t +t1=0
(√3t2 3t) + (t1) = 0
3t(t1) + 1(t1) = 0
(t1)(√3t +1) = 0
Thisgivest=1andt=1
3
Put,t=cos x,then
cos x =1andcos x =1
3
cos x = 1 3isrejectedasx [0,π2]
cos x = 1 3 isrejectedas x [ 0,π
cos x =1
Since, x 0,π
2,then cos x =cos 0
Thisgivesx=0isonlysolution.
Therefore,numberofsolutionwhenx [0,π2]is1.
[ ]
Given,3 sin x +4 cos x =k+1...(i)
MultiplyanddivideLHSofEq.(i)by 32+42=5
-------------------------------------------------------------------------------------------------
Question58
Thevalueofcos3π
8cos
8+sin3π
8sin
8is
[Jan.9,2020(I)]
Options:
A. 1
2
B. 1
22
C. 1
2
D. 1
4
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
( ) ( ) ( ) ( )
i.e.53
5sin x +4
5cos x =k+1
5(cos α sin x +sin α cos x) = k+1
[Letcos α =35thensin α =1 (35)2=4
5
5 sin(x+α) = k+1[Use sin(a+b) = sin a cos b +cos a sin b]
sin(x+α) = k+1
5
Letx+α=θ
Then,sin θ =k+1
5
1sin θ 1
1k+1
51
5k+15
6k4
∴Possibleintegralvaluesofkare−6, 5, 4, 3, 2, 1,0,1,2,3and4.i.e.
Total11integralvaluesofkarepossibleforwhichEq.(i)hassolution.
( )
]
cos3π
84cos3π
83 cos π
8+sin3π
83 sin π
84sin3π
8
=4cos6π
84sin6π
83cos4π
8+3sin4π
8
=4 cos2π
8sin2π
8
sin4π
8+cos4π
8+sin2π
8cos2π
8;
-3 cos2π
8sin2π
8cos2π
8+sin2π
8;
=cos π
44 1 sin2π
8cos2π
83
=1
211
2=1
22.
[ ] [ ]
[ ( ) ]
[( ) ]
[ ( ) ( ) ]
[ ( ) ]
[ ] ]
Question59
IfL =sin2π
16 sin2π
8andM =cos2π
16 sin2π
8,then:
[Sep.05,2020(II)]
Options:
A.L = 1
22+1
2cos π
8
B.L =1
421
4cos π
8
C.M =1
42+1
4cos π
8
D.M =1
22+1
2cos π
8
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question60
If 2sin α
1+cos 2 α =1
7and 1cos 2 β
2=1
10 α,β0,π
2,thentan(α+)is
equalto_______
[Jan.8,2020(II)]
Answer:1
Solution:
Solution:
( ) ( ) ( ) ( )
( )
L+M=12sin2π
8=cos π
4=1
2........(i)
andLM= cos π
8.........(ii)
Fromequations(i)and(ii),L=1
2
1
2cos π
8=1
221
2cos π
8andM=1
2
1
2+cos π
8=1
22+1
2cos π
8
( ) ( )
2sin α
2cos α =1
7and 1cos2β
2=1
10
2sin β
2=1
10
tan α =1
7andsin β =1
10
tan β =1
3
-------------------------------------------------------------------------------------------------
Question61
Thesetofallpossiblevaluesofθintheinterval(0,π)forwhichthe
points(1,2)and(sin θ,cos θ)lieonthesamesideofthelinex +y=1is:
[Sep.02,2020(II)]
Options:
A. 0,π
2
B. π
4,
4
C. 0,
4
D. 0,π
4
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question62
Iftheequationcos4θ+sin4θ+λ=0hasrealsolutionsforθ,thenλlies
intheinterval:
[Sep.02,2020(II)]
Options:
A. 5
4, 1
( )
( )
( )
( )
( )
tan 2 β =2 tan β
1tan2β=
21
3
11
9
=
2
3
8
9
=3
4
tan(α+) = tan α +tan 2 β
1tan α tan 2 β
=
1
7+3
4
11
73
4
=
4+21
28
25
28
=1
Letf(x,y) = x+y1
Given(1,2)and(sin θ,cos θ)areliesonsameside.
f(1,2) f(sin θ,cos θ) > 0
2[sin θ +cos θ 1] > 0
sin θ +cos θ > 1sin θ +π
4>1
2
θ+π
4π
4,
4θ0,π
2
( )
( ) ( )
B. 1, 1
2
C. 1
2, 1
4
D. 3
2, 5
4
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question63
Thenumberofdistinctsolutionsoftheequation,
log12sin x | = 2log12|cos xintheinterval[0,],is_______
[Jan.9,2020(I)]
Answer:8
Solution:
Solution:
[ ]
( ]
[ ]
Givenequationiscos4(θ) + sin 4(θ) + λ=0
λ= [cos4(θ) + sin 4(θ)]
λ= [(cos2(θ) + sin 2(θ))22cos2(θ)sin 2(θ)]
[∵a2+b2= (a+b)22ab]
λ= (1)2+1
2(2 cos(θ)s i n (θ))2
[∵cos2(θ) + sin 2(θ) = 1]
λ=1
2sin 2() 1
Weknowthat 1sin (x) 1
Therefore 0 sin 2(x) 1
So 1
2sin 2() 0,1
2
for 1
2sin 2() = 0λ=01= 1
for 1
2sin 2() = 1
2λ=1
21=1
2
λ 1, 1
2
Hence,Option(B)i.e. 1,1
2iscorrect
[ ]
[ ]
[ ]
log12|sin x | = 2log12cos x
log12|sin x cos x | = 2
| sin x cos x =1
4
sin 2 x = ± 1
2
|
-------------------------------------------------------------------------------------------------
Question64
Foranyθ π
4,π
2theexpression
3(sin θ cos θ)4+6(sin θ +cos θ)2+4sin6θequals:
[Jan.9,2019(I)]
Options:
A.13 4cos2θ+6sin2θcos2θ
B.13 4cos6θ
C.13 4cos2θ+6cos4θ
D.13 4cos4θ+2sin2θcos2θ
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question65
Theangleofelevationofthetopofaverticaltowerstandingona
horizontalplaneisobservedtobe45fromapointAontheplane.LetB
bethepoint30mverticallyabovethepointA.Iftheangleofelevationof
thetopofthetowerfromBbe30,thenthedistance(inm)ofthefootof
thetowerfromthepointAis:
[April12,2019(II)]
Options:
A.15(3+ 3)
( )
Hence,totalnumberofsolutions=8.
3(sin θ cos θ)4+6(sin θ +cos θ)2+4sin6θ
=3(12 sin θ cos θ)2+6(1+2 sin θ cos θ) + 4sin6θ
=3(1+4sin2θcos2θ4 sin θ cos θ) + 6
12 sin θ cos θ +4sin6θ
=9+12sin2θcos2θ+4sin6θ
=9+12cos2θ(1cos2θ) + 4(1cos2θ)3
=9+12cos2θ12cos4θ+4(1cos6θ3cos2θ+3cos4θ)
=9+44cos6θ
=13 4cos6θ
B.15(5 3)
C.15(3 3)
D.15(1+ 3)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question66
Thevalueofcos210cos 10cos 50+cos250is
[April9,2019(II)]
Options:
A. 3
4+cos 20
B..3/4
C. 3
2(1+cos 20)
D.3
2
Answer:B
Solution:
LettheheightofthetowerbehanddistanceofthefootofthetowerfromthepointAisd.Bythediagram,
tan 45=h
d=1
h=d......(i)
tan 30=h30
d
3(h30) = d........(ii)
Putthevalueofh
from(i)to(ii),
3d=d+303
d=303
31=153(√3+1) = 15(3+ 3)
-------------------------------------------------------------------------------------------------
Question67
Twopolesstandingonahorizontalgroundareofheights5mand10m
respectively.Thelinejoiningtheirtopsmakesanangleof15withthe
ground.Thenthedistance(inm)betweenthepoles,is:
[April.09,2019(II)]
Options:
A.5(2+ 3)
B.5(√3+1)
C. 5
2(2+ 3)
D.10(√31)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question68
Thevalueofsin 10sin 30sin 50sin 70is:
[April.09,2019(II)]
cos210cos 10cos 50+cos250
=1+cos 20
2+1+cos 100
21
2(2 cos 10cos 50)
=1+1
2(cos 20+cos 100) 1
2[cos 60+cos 40]
=11
4+1
2[cos 20+cos 100cos 40]
=3
4+1
2[2 cos 60×cos 40cos 40]
=3
4
( ) ( )
( )
Bythediagram.
tan 15=5
dd=5
tan 15=5(√3+1)
31
=5(4+23)
2=5(2+ 3)
Options:
A. 1
16
B. 1
32
C. 1
18
D. 1
36
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question69
Ifcos(α+β) = 3
5,sin(αβ) = 5
13and0 <α,β<π
4,thentan()isequal
to:
[April8,2019(I)]
Options:
A. 63
52
B. 63
16
C. 21
16
D. 33
52
Answer:B
Solution:
Solution:
sin(60+A) sin(60A)sin A =1
4sin 3 A
sin 10sin 50sin 70=sin 10sin(6010)
sin(60+10) = 1
4sin 30
sin 10sin 30sin 50sin 70=1
4sin230 =1
16
α+βandαβbothareacuteangles.
cos(α+β) = 3
5,thensin(α+β) = 13
5
2=4
5
tan(α+β) = 4
3
Andsin(αβ) = 5
13,then
( )
-------------------------------------------------------------------------------------------------
Question70
Ifsin4α+4cos4β+2=42sin α cos β;α,β [0,π],then
cos(α+β) cos(αβ)isequalto:
[Jan.12,2019(II)]
Options:
A.0
B.-1
C.2
D.2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question71
Letf k(x) = 1
k(sinkx+coskx)fork =1,2,3, ...Thenforallx R,the
valueoff 4(x) f6(x)isequalto:
[Jan.11,2019(I)]
cos(αβ) = 15
13
2=12
13
tan(αβ) = 5
12
Now,tan 2 α =tan((α+β) + (αβ))
=tan(α+β) + tan(αβ)
1tan(α+β) tan(αβ)=
4
3+5
12
14
35
12
=63
16
( )
∵Thegivenequationis
sin4α+4cos4β+2=42 sin α cos β,α,β [0,π]
Then,byA.M.,G.M.ineqality;
A.M.≥G.M.
sin4α+4cos4β+1+1
4 (sin4α4cos4β11)
1
4
sin4α+4cos4β+1+142 sin α | cos β|
Inequalitystillholdswhencos β <0butL.H.S.ispositivethancos β >0,then
L.H.S. = R.H.S
sin4α=1 and cos4β=1
4
α=π
2and β =π
4
cos(α+β) cos(αβ)
=cos π
2+βcos π
2β
= sin β sin β = 2 sin π
4= 2
( ) ( )
Options:
A. 1
12
B. 1
4
C. 1
12
D. 5
12
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question72
Thevalueof
cos π
22cos π
23⋅... cos π
210 sin π
210
[Jan.10,2019(II)]
Options:
A. 1
512
B. 1
1024
C. 1
256
D. 1
2
Answer:A
Solution:
fk(x) = 1
k(sinkx+coskx)
f4(x) = 1
4[sin4x+cos4x]
=1
4(sin2x+cos2x)2(sin 2 x)2
2
=1
41(sin 2 x)2
2
f6(x) = 1
6[sin6x+cos6x]
=1
6sin2x+ (cos2x) 3
4(sin2x)2
=1
613
4(sin 2 x)2
Nowf4(x) f(6)(x) = 1
41
6(sin 2 x)2
8+1
8(sin 2 x)2
=1
12
[ ]
[ ]
[ ( ]
[ ]
Solution:
-------------------------------------------------------------------------------------------------
Question73
Thenumberofsolutionsoftheequation
1+sin4x=cos23x,x
2,
2is:
[April12,2019(I)]
Options:
A.3
B.5
C.7
D.4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question74
LetSbethesetofallα Rsuchthattheequation,cos 2 x
+α sin x = 7hasasolution.ThenSisequalto
[April12,2019(II)]
Options:
A.R
B.[1,4]
C.[3,7]
[ ]
A=cos π
22cos π
23...cos π
210 sin π
210
=1
2cos π
22cos π
23...cos π
29sin π
29
=1
28cos π
22sin π
22=1
29sin π
2
=1
512
( )
( )
Considerequation,1+sin4x=cos23x
L.H.S. = 1+sin4xandRH.S. = cos23x
L.H.S. 1andR.H.S. 1L.H.S. = R.H.S. = 1
sin4x=0,andcos23x =1
sin x =0and(4cos2x3)2cos2x=1
sin x =0andcos2x=1x=0, ±π, ±
Hence,totalnumberofsolutionsis5.
D.[2,6]
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question75
If[x]denotesthegreatestintegerx,thenthesystemoflinear
equations
[sin θ]x+ [−cos θ]y=0
[cot θ]x+y=0
[April12,2019(II)]
Options:
A.haveinfinitelymanysolutionsifθ π
2,
3andhasauniquesolutionifθ π,
6.
B.hasauniquesolutionifθ π
2,
3π,
6.
C.hasauniquesolutionifθ π
2,
3andhaveinfinitelymanysolutionsifθ π,
6
D.haveinfinitelymanysolutionsifθ π
2,
3π,
6
Answer:A
Solution:
Solution:
( ) ( )
( ) ( )
( ) ( )
( ) ( )
Givenequationis,cos 2 x +α sin x = 712sin2x+α sin x = 7
2sin2xα sin x + ( 8) = 0
sin x =α±α28( +8)
4
sin x =α± (α8)
4sin x =α4
4
[sin x =2(rejected )]
∵equationhassolution,then α4
4 [−1,1]
α [2,6]
Accordingtothequestion,therearetwocases.
Case1:θπ
2,
3
Inthisinterval,[sin θ] = 0, [−cos θ] = 0and[cot θ] = 1Thenthesystemofequationswillbe;
0x+0y=0and−x+y=0
Whichhaveinfinitelymanysolutions.
Case2:θπ,
6
Inthisinterval,[sin θ] = 1and[−cos θ] = 0
Thenthesystemofequationswillbe;
x+0y=0and[cot θ]x+y=0
Clearly,x=0andy=0whichhasuniquesolution.
( )
( )
-------------------------------------------------------------------------------------------------
Question76
LetS = {θ [−,] : 2cos2θ+3 sin θ =0}.
ThenthesumoftheelementsofSis:
[April9,2019(I)]
Options:
A. 13π
6
B.
3
C.2π
D.π
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question77
If0 x<π
2,thenthenumberofvaluesofxforwhich
sin x sin 2 x +sin 3 x =0,is:
[Jan.09,2019(II)]
Options:
A.3
B.1
C.4
D.2
2cos2θ+3 sin θ =0
(2 sin θ +1)(sin θ 2) = 0
sin θ = 1
2orsin θ =2→Notpossibe
Therequiredsumofallsolutionsin[−,]is
=π+π
6+ π
6+ π
6+ π+π
6=
( ) ( ) ( ) ( )
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question78
Thenumberofsolutionsofsin 3 x =cos 2 x,intheinterval π
2,π is
[OnlineApril15,2018]
Options:
A.3
B.4
C.2
D.1
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question79
Ifsumofallthesolutionsoftheequation
8 cos x cos π
6+xcos π
6x1
21in[0,π]iskπthenkisequal
to:
[2018]
( )
( ( ) ( ) )
sin x sin 2 x +sin 3 x =0
sin x 2 sin x cos x +3 sin x 4sin3x=0
4 sin x 4sin3x2 sin x cos x =0
2 sin x(1sin2x) sin x cos x =0
2 sin x cos2xsin x cos x =0
sin x cos x(2 cos x 1) = 0
sin x =0,cos x =0,cos x =1
2
x=0,π
3x0,π
2
[ )
sin 3 x =cos 2 x
3 sin x 4sin3x=12sin2x
4sin3x2sin2x3 sin x +1=0
sin x =1,2±25
8
Intheinterval π
2,π,sin x =2+25
8
So,thereisonlyonesolution.
( )
Options:
A. 13
9
B. 8
9
C. 20
9
D. 2
3
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question80
If5(tan2xcos2x) = 2 cos 2 x +9,thenthevalueofcos 4 xis
[2017]
Options:
A.7
9
B.3
5
C. 1
3
D. 2
9
8 cos x cos2π
6sin2x1
2=1
8 cos x 3
41
2sin2x=1
8 cos x 1
4 (1cos2x) = 1
8 cos x 1
41+cos2x=1
8 cos x cos2x3
4=1
84cos3x3 cos x
4=1
2(4cos3x3 cos x) = 1
2 cos 3 x =1cos 3 x =1
2
3x =2nπ ±π
3,n1
x=2nπ
3±π
9
Inx [0,π] : x=π
9,
3+π
9,
3π
9,only
Sumofallthesolutionsoftheequation
=1
9+2
3+1
9+2
31
9π=13
9π
( )
( )
( )
( )
( )
( )
( )
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question81
IfmandM aretheminimumandthemaximumvaluesof
4+1
2sin22x 2cos4x,xR,thenM misequalto:
[OnlineApril9,2016]
Options:
A. 9
4
B. 15
4
C. 7
4
D. 1
4
Answer:B
Solution:
Solution:
Wehave
5tan2x5cos2x=2(2cos2x1) + 9
5tan2x5cos2x=4cos2x2+9
5tan2x=9cos2x+7
5(sec2x1) = 9cos2x+7
Letcos2x=t
5
t9t 12 =0
9t2+12t 5=0
9t2+15t 3t 5=0
(3t 1)(3t +5) = 0
t=1
3ast 5
3
cos 2 x =2cos2x1=21
31= 1
3
cos 4 x =2cos22x 1=21
3
21= 7
9
( )
( )
4+1
2sin22x 2cos4x
4+2(1cos2x)cos2x2cos4x
4 cos4xcos2x
21+1
16 1
16
4 cos2x1
4
217
16
0cos2x1
1
4cos2x1
43
4
0cos2x1
4
29
16
{ }
{ ( ) }
( )
-------------------------------------------------------------------------------------------------
Question82
If0 x<,thenthenumberofrealvaluesofx,whichsatisfythe
equationcos x +cos 2 x +cos 3 x +cos 4 x =0is:
[2016]
Options:
A.7
B.9
C.3
D.5
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question83
Thenumberofx [0,]forwhich
2sin4x+18cos2x2cos4x+18sin2x=1is
[OnlineApril9,2016]
Options:
A.2
B.6
C.4
D.8
| |
17
16 cos2x1
4
217
16 9
16 17
16
17
4 4 cos2x1
4
217
16 1
2
M=17
4
m=1
2
Mm=17
42
4=15
4
( )
{ ( ) }
cos x +cos 2 x +cos 3 x +cos 4 x =0
2 cos 2 x cos x +2 cos 3 x cos x =0
2 cos x 2 cos 5x
2cos x
2=0
cos x =0,cos 5x
2=0,cos x
2=0
x=π,π
2,
2,π
5,
5,
5,
5
( )
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question84
Ifcos α +cos β =3
2andsin α +sin β 1
2andθisthethearithmeticmeanof
αandβ,thensin 2 θ +cos 2 θisequalto:
[OnlineApril11,2015]
Options:
A. 3
5
B. 7
5
C. 4
5
D. 8
5
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question85
2sin4x+18cos2x2cos4x+18sin2x=1
2sin4x+18cos2x2cos4x+18sin2x= ±1
2sin4x+18cos2x= ±1+2cos4x+18sin2x
bysquaringboththesideswewillget8solutions
| |
Letcos α +cos β =3
2
2 cos α+β
2cos αβ
2=3
2........(i)
andsin α +sin β =1
2
2 sin α+β
2cos αβ
2=1
2.........(ii)
Ondividing(ii)by(i),
wegettan α+β
2=1
3
Given:θ=α+β
2 =α+β
Considersin 2 θ +cos 2 θ =sin(α+β) + cos(α+β) =
2
3
1+1
9
+
11
9
1+1
9
=6
10 +8
10 =7
5
( )
Letf k(x) = 1
k(sinkx+coskx)wherex Randk 1Thenf 4(x) f6(x)
equals
[2014]
Options:
A. 1
4
B. 1
12
C. 1
6
D. 1
3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question86
If2 cos θ +sin θ =1 θ π
2then7 cos θ +6 sin θisequalto:
[OnlineApril11,2014]
Options:
A. 1
2
B.2
C. 11
2
D. 46
5
Answer:D
Solution:
Solution:
( )
(b)Letfk(x) = 1
k(sinkx+coskx)Considerf4(x) f6(x) = 1
4(sin4x+cos4x)
1
6(sin6x+cos6x)
=1
4[12sin2xcos2x] 1
6[13sin2xcos2x]
=1
41
6=1
12
Given2 cos θ +sin θ =1
Squaringbothsides,
weget
-------------------------------------------------------------------------------------------------
Question87
Ifcosecθ =p+q
pq(pq0),then cot π
4+θ
2isequalto:
[OnlineApril9,2014]
Options:
A. p
q
B. q
p
C.pq
D.pq
Answer:B
Solution:
Solution:
| ( ) |
(2 cos θ +sin θ)2=12
4cos2θ+sin2θ+4 sin θ cos θ =1
3cos2θ+ (cos2θ+sin2θ) + 4 sin θ cos θ =1
3cos2θ+not x +4 sin θ cos θ =not
3cos2θ+4 sin θ cos θ =0
cos θ(3 cos θ +4 sin θ) = 0
3 cos θ +4 sin θ =03 cos θ = 4 sin θ
3
4=tan θ =sec2θ1=3
4
tan θ =sec2θ1
sec2θ1=3
4
2=9
16
sec2θ=9
16 +1=25
16 sec θ =5
4
orcos θ =4
5......(1)
Now,sin2θ+cos2θ=1sin2θ+4
5
2=1
sin2θ+4
5=1sin2θ=116
25 =9
25
sin θ = ± 3
5.. . (2)
Taking sin θ = + 3
5because sin θ = 3
5cannot
satisfythegivenequation.
Therefore;7 cos θ +6 sin θ
=7×4
5+6×3
5=28
5+18
5=46
5
()
( )
( )
( ) ( )
cosecθ =p+q
pq,sin θ =pq
p+q
cos θ = ± 1sin2θ=1pq
p+q
2=2pq
(p+q)
cot π
4+θ
2=
cot π
4cot θ
21
cot π
4+cot θ
2
=
cot θ
21
cot θ
2+1
( )
| ( ) | | | | |
-------------------------------------------------------------------------------------------------
Question88
Thenumberofvaluesofαin[0,]forwhich
2sin3α7sin2α+7 sin α =2,is:
[OnlineApril9,2014]
Options:
A.6
B.4
C.3
D.1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question89
Theexpression tan A
1cot A +cot A
1tan Acanbewrittenas:
[2013]
cos θ
2sin θ
2
cos θ
2+sin θ
2
Onrationalizingdenominator,weget
cos θ
2sin θ
2
cos θ
2+sin θ
2
cos θ
2+sin θ
2
cos θ
2+sin θ
2
=cos θ
sin2θ
2+cos2θ
2+2 sin θ
2cos θ
2
=cos θ
1+sin θ =2pq (p+q)
1+(pq)
p+q
=pq
p=q
p
| |
| ( ) ( ) |
| |
| | ||
2sin3α7sin2α+7 sin α 2=0
2sin2α(sin α 1) 5 sin α(sin α 1)
+2(sin α 1) = 0
(sin α 1)(2sin2α5 sin α +2) = 0
sin α 1=0or2sin2α5 sin α +2=0
sin α =1orsin α =5± 25 16
4=5±3
4
α=π
2orsin α =1
2,2
Now,sin α 2
for,sin α =1
2
α=π
3,
3
Therearethreevaluesofαbetween[0,]
Options:
A.sin A cos A +1
B.sec A c o s e c A +1
C.tan A +cot A
D.sec A +cosecA
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question90
LetA = {θ:sin(θ) = tan(θ)}andB = {θ:cos(θ) = 1}betwosets.Then:
[OnlineApril25,2013]
Options:
A.A =B
B.A B
C.B A
D.A BandB Aφ
Answer:B
Solution:
Solution:
Givenexpressioncanbewrittenas
sin A
cos A×sin A
sin A cos A +cos A
sin A ×cos A
cos A sin A
tan A =sin A
cos A and
cot A =cos A
sin A
=1
sin A cos A
sin3Acos3A
cos A sin A
a3b3= (ab)(a2+ab +b2)
=sin2A+sin A cos A +cos2A
sin A cos A
=1+secAcosecA
( )
{ }
LetA= {θ:sin θ =tan θ}
andB= {θ:cos θ =1}
Now,A=θ:sin θ =sin θ
cos θ
= {θ:sin θ(cos θ 1) = 0}
= {θ=0,π,,, .....}
ForB:cos θ =1θ=π,,, ......
ThisshowsthatAisnotcontainedinB.i.e.A not B.butBA
{ }
-------------------------------------------------------------------------------------------------
Question91
Thenumberofsolutionsoftheequationsin 2 x 2 cos x +4 sin x =4in
theinterval[0,]is:
[OnlineApril23,2013]
Options:
A.3
B.5
C.4
D.6
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question92
Statement-1:Thenumberofcommonsolutionsofthetrigonometric
equations2sin2θcos 2 θ =0and2cos2θ3 sin θ =0intheinterval
[0,]istwo.
Statement-2:Thenumberofsolutionsoftheequation,2
cos2θ3 sin θ =0intheinterval[0,π]istwo.
[OnlineApril22,2013]
Options:
A.Statement-1istrue;Statement-2istrue;Statement-2isacorrectexplanationforstatement-
1.
B.Statement-1istrue;Statement-2istrue;Statement-2isnotacorrectexplanationfor
statement-1.
C.Statement-1isfalse;Statement-2istrue.
D.Statement-1istrue;Statement-2isfalse.
Answer:B
Solution:
sin 2 x 2 cos x +4 sin x =4
2 sin x cos x 2 cos x +4 sin x 4=0
(sin x 1)(cos x 2) = 0
cos x 20, sin x =1
x=π
2,
2,
2
Solution:
-------------------------------------------------------------------------------------------------
Question93
Thevalueofcos 255+sin 195is
[OnlineMay26,2012]
Options:
A. 31
22
B. 31
2
C.31
2
D. 3+1
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
( )
2sin2θcos 2 θ =0
2sin2θ (12sin2θ) = 0
2sin2θ1+2sin2θ=0
4sin2θ=1sin θ = ± 1
2
θ=π
4,
4,
4,
4,θ [0,]
θ=π
6,
6,
6,11π
6
Now2cos2θ3 sin θ =0
2(1sin2θ) 3 sin θ =0
⇒−2sin2θ3 sin θ +2=0
2sin2θ4 sin θ +sin θ +2=0
2sin2θsin θ +4 sin θ 2=0
sin θ(2 sin θ 1) + 2(2 sin θ 1) = 0
Now2cos2θ3 sin θ =0
2(1sin2θ) 3 sin θ =0
⇒−2sin2θ3 sin θ +2=0
⇒−2sin2θ4 sin θ +sin θ +2=0
2sin2θsin θ +4 sin θ 2=0
sin θ(2 sin θ 1) + 2(2 sin θ 1) = 0
sin θ =1
2, 2
Butsin θ = 2,isnotpossible∴ sin θ =1
2, 2θ=π
6,
6
Hence,therearetwocommonsolution,thereeachofthestatement-1and2aretruebutstatement-2isnotacorrect
explanationforstatement-1.
Considercos 255+sin 195
=cos(27015) + sin(180+15)
= sin 15sin 15
= 2 sin 15= 231
22= 31
2
( ) ( )
Question94
Letf (x) = sin x,g(x) = x
Statement1:f (x) g(x)forxin(0,)
Statement2 :f(x) 1forxin(0,)butg(x) ∞asx ∞.
[OnlineMay7,2012]
Options:
A.Statement1istrue,Statement2isfalse.
B.Statement1istrue,Statement2istrue,Statement2isacorrectexplanationforStatement1
.
C.Statement1istrue,Statement2istrue,Statement2isnotacorrectexplanationfor
Statement1.
D.Statement1isfalse,Statement2istrue.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question95
Theequationesin x esin x 4=0has:
[2012]
Options:
A.infinitenumberofrealroots
B.norealroots
C.exactlyonerealroot
D.exactlyfourrealroots
Answer:B
Solution:
Solution:
Letf (x) = sin xandg(x) = x
Statement-1:f(x) g(x) x (0,)
i.e.,sin x xx (0,)
whichistrue
Statement-2:f(x) 1x (0,)
i.e.,sin x 1x (0,)
Itistrueand
g(x) = xasxalsotrue.
Givenequationisesin x esin x 4=0
Putesin x =tinthegivenequation,weget
t24t 1=0
-------------------------------------------------------------------------------------------------
Question96
IfA =sin2x+cos4x,thenforallrealx:
[2011]
Options:
A. 13
16 A1
B.1 A2
C. 3
4A13
16
D. 3
4A1
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question97
Thepossiblevaluesofθ (0,π)suchthatsin(θ) + sin() + sin() = 0
are
[2011RS]
Options:
t=4± 16 +4
2=4± 20
2
=4±25
2=2± 5
esin x =2± 5(∵t=esin x)
esin x =2 5and esin x =2+ 5
esin x =2 5<0
and sin x =ln(2+ 5) > 1
So,rejected.
Hence,givenequationhasnosolution.
Theequationhasnorealroots.
A=sin2x+cos4x
=sin2x+cos2x(1sin2x)
=sin2x+cos2x1
4(2 sin x cos x)2
=11
4sin2(2x)
1sin 2 x 1
0sin2(2x) 1
0 1
4sin2(2x) 1
4
111
4sin2(2x) 11
4
1A3
4
A. π
4,
12,π
2,
3,
4,
9
B.
9,π
4,π
2,
3,
4,35π
36
C.
9,π
4,π
2,
3,
4,
9
D.
9,π
4,
9,π
2,
4,
9
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question98
Letcos(α+β) = 4
5andsin(αβ) = 5
13where0 α,βπ
4.Thentan 2 α =
[2010]
Options:
A. 56
33
B. 19
12
C. 20
7
D. 25
16
Answer:A
Solution:
Solution:
sin 4 θ +2 sin 4 θ cos 3 θ =0
sin 4 θ(1+2 cos 3 θ) = 0
sin 4 θ =0
or cos 3 θ = 1
2
=;nI
or =2nπ ±
3,nI
θ=π
4,π
2,
4or θ=
9,
9,
9[∵θ, (0,π)]
cos(α+β) = 4
5tan(α+β) = 3
4
sin(αβ) = 5
13 tan(αβ) = 5
12
tan 2 α =tan[ (α+β) + (αβ)
=tan(α+β) + tan(αβ)
1tan(α+β)tan(αβ)=
3
4+5
12
13
45
12
=56
33
-------------------------------------------------------------------------------------------------
Question99
LetAandBdenotethestatements
A:cos α +cos β +cos γ =0
B:sin α +sin β +sin γ =0
I f cos(βγ) + cos(γα) + cos(αβ) = 3
2,then:
[2009]
Options:
A.AisfalseandBistrue
B.bothAandBaretrue
C.bothAandBarefalse
D.AistrueandBisfalse
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question100
Ifpandqarepositiverealnumberssuchthatp2+q2=1thenthe
maximumvalueof(p+q)is
[2007]
Options:
A. 1
2
B. 1
2
C.2
D.2.
Giventhat
cos(βγ) + cos(γα) + cos(αβ) = 3
2
2[cos(βγ) + cos(γα) + cos(αβ)] + 3=0
2[cos(βγ) + cos(γα) + cos(αβ)]
+sin2α+cos2α+sin2β+cos2β
+sin2γ+cos2α=0
[ sin2α+sin2β+sin2γ+2 sin α sin β
+2 sin β sin γ +2 sin γ sin α ] + [ cos2α+cos2β
+cos2γ+2 cos α cos β +2 cos β cos γ
+2 cos γ cos α ] = 0
[∵cos(AB) = cos A cos B +sin A sin B]
[sin α +sin β +sin γ]2+ (cos α +cos β +cos γ)2=0
sin α +sin β +sin γ =0andcos α +cos β +cos γ =0
AandBbotharetrue.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question101
Atriangularparkisenclosedontwosidesbyafenceandonthethird
sidebyastraightriverbank.Thetwosideshavingfenceareofsame
lengthx.Themaximumareaenclosedbytheparkis
[2006]
Options:
A. 3
2x2
B. x3
8
C. 1
2x2
D.πx2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question102
If0 <x<πandcos x +sin x =1
2,thentan xis
[2006]
Giventhatp2+q2=1
p=cos θandq=sin θsatisfythegivenequation
Thenp+q=cos θ +sin θ
Weknowthat
a2+b2a cos θ +b sin θ a2+b2
2cos θ +sin θ 2
Hencemax.valueofp+qis√2
Area = 1
2x2sin θ
Maximumvalueofsin θis1atθ=π
2
Amax =1
2x2
Options:
A. (1 7)
4
B. (4 7)
3
C.(4+ 7)
3
D. (1+ 7)
4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question103
Thenumberofvaluesofxintheinterval[0,]satisfyingtheequation
2sin2x+5 sin x 3=0is
[2006]
Options:
A.4
B.6
C.1
D.2
Answer:A
Solution:
Solution:
cos x +sin x =1
21+sin 2 x =1
4
sin 2 x = 3
4
π<2x <
π
2<xπ........(i)
2 tan x
1+tan2x= 3
4
3tan2x+8 tan x +3=0
tan x =8± 64 36
6= 4± 7
3
for π
2<x<π,tanx<0
tan x =4 7
3
-------------------------------------------------------------------------------------------------
Question104
Ifu =a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ
thenthedifferencebetweenthemaximumandminimumvaluesofu2is
givenby
[2004]
Options:
A.(ab)2
B.2 a2+b2
C.(a+b)2
D.2(a2+b2)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
2sin2x+5 sin x 3=0
(sin x +3)(2 sin x 1) = 0
sin x =1
2andsin x 3
∴In[0,], xhas4values.
u2=a2+b2+2a4+b4cos2θsin2θ; +a2b2(cos4θ+sin4θ) ........(1)
Now,(a4+b4)cos2θsin2θ+a2b2(cos4θ+sin4θ)
= (a4+b4)cos2θsin2θ+a2b2(12cos2θsin2θ)
= (a4+b42a2b2)cos2θsin2θ+a2b2
= (a2b2)2sin2
4+a2b2.......(2)
0sin2 1
0 (a2b2)2sin2
4(a2b2)2
4
a2b2 (a2b2)2sin2
4+a2b2
(a2b2)21
4+a2b2...........(3)
From(1)
a2+b2+2a2b2u2a2+b2+2
2(a2+b2)2
(a+b)2u22(a2+b2)
∴Max.value−Min.value
=2(a2+b2) (a+b2) = (ab)2
( ) )
Question105
Letα,βbesuchthatπ <αβ<3π.
Ifsin α +sin β = 21
65andcos α +cos β = 27
65 ,thenthevalueofcos αβ
2
[2004]
Options:
A. 6
65
B. 3
130
C. 6
65
D.3
130
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question106
Thefunctionf (x) = log x +x2+1,is
[2003]
Options:
A.neitheranevennoranoddfunction
B.anevenfunction
C.anoddfunction
D.aperiodicfunction.
Answer:C
()
π<αβ<
π
2<αβ
2<
2cos αβ
2<0......(1)
sin α +sin β = 21
65
2 sin α+β
2cos αβ
2= 21
65.......(2)
cos α +cos β = 27
65
2 cos α+β
2cos αβ
2= 27
65......(3)
Squaringandadding(2)and(3),weget
4cos2αβ
2=(21)2+ (27)2
(65)2=1170
65 ×65
cos2αβ
2=9
130 cos αβ
2= 3
130 [from(1)]
Solution:
-------------------------------------------------------------------------------------------------
Question107
Theperiodofsin2θis
[2002]
Options:
A.π2
B.π
C.2π
D.π 2
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question108
Whichoneisnotperiodic?
[2002]
Options:
A.|sin 3 x| + sin2x
B.cos x+cos2x
C.cos 4 x +tan2x
D.cos 2 x +sin x
Answer:B
Solution:
Givenf(x) = log x +x2+1
f(−x) = log x+x2+1=log x2x2+1
x+x2+1
= log x +x2+1= f(x)
f(x)isanoddfunction.
()
{}{}
()
Weknowthatsin2θ=1cos 2 θ
2;
Sinceperiodofcos 2 θ =
2=π
Henceperiodofsin2θisalsoπ.
-------------------------------------------------------------------------------------------------
Question109
Thenumberofsolutionoftan x +sec x =2 cos xin[0,)is
[2002]
Options:
A.2
B.3
C.0
D.1
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
weknowthatcos xisnonperiodic
cos x+cos2xcannotbeperiodic.
tan x +sec x =2 cos x
sin x +1=2cos2x
sin x +1=2(1sin2x)
2sin2x+sin x 1=0
(2 sin x 1)(sin x +1) = 0
sin x =1
2, 1.
x=30,150,270
Numberofsolution = 3