ThreeDimensionalGeometry
Question1
Iftheshortestdistancebetweenthelines x4
1=y+1
2=z
3and
xλ
2=y+1
4=z2
5is 6
5,thenthesumofallpossiblevaluesofλis:
[27-Jan-2024Shift1]
Options:
A.5
B.8
C.7
D.10
Answer:B
Solution:
Question2
Thedistance,ofthepoint(7, 2,11)fromtheline x6
1=y4
0=z8
3
alongtheline x5
2=y1
3=z5
6,is:
[27-Jan-2024Shift1]
Options:
A.12
B.14
C.18
D.21
Answer:B
Solution:
Question3
ThepositionvectorsoftheverticesA,BandCofatriangleare
2^
i3^
j+3^
k,2^
i+2^
j+3^
kand^
i+^
j+3^
krespectively.Letl denotes
thelengthoftheanglebisectorADofBACwhereDisontheline
segmentBC,then2l 2equals:
[27-Jan-2024Shift2]
Options:
A.49
B.42
C.50
D.45
Answer:D
Solution:
Question4
LetthepositionvectorsoftheverticesA,BandCofatrianglebe
2^
i+2^
j+^
k,^
i+2^
j+2^
kand2^
i+^
j+2^
krespectively.Letl 1,l2andl 3be
thelengthsofperpendicularsdrawnfromtheorthocenterofthe
triangleonthesidesAB,BCandCArespectively,thenl 1
2+l2
2+l3
2
equals:
[27-Jan-2024Shift2]
Options:
A. 1
5
B. 1
2
C. 1
4
D. 1
3
Answer:B
Solution:
Question5
Lettheimageofthepoint(1,0,7)intheline x
1=y1
2=z2
3bethepoint
(α,β,γ).Thenwhichoneofthefollowingpointsliesonthelinepassing
through(α,β,γ)andmakingangles
3and
4withy-axisandz-axis
respectivelyandanacuteanglewithx-axis?
[27-Jan-2024Shift2]
Options:
A.(1, 2,1+ 2)
B.(1,2,1 2)
C.(3,4,322)
D.(3, 4,3+22)
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question6
Thelines x2
2=y
2=z7
16 and x+3
4=y+2
3=z+2
1intersectatthepointP.If
thedistanceofPfromtheline x+1
2=y1
3=z1
1isl ,then14l 2isequal
to.................
[27-Jan-2024Shift2]
Answer:108
Solution:
-------------------------------------------------------------------------------------------------
Question7
LetObetheoriginandthepositionvectorofAandBbe2^
i+2^
j+^
kand
2^
i+4^
j+4^
krespectively.IftheinternalbisectorofAOBmeetstheline
ABatC,thenthelengthofOCis
[29-Jan-2024Shift1]
Options:
A. 2
331
B. 2
334
C. 3
434
D. 3
231
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question8
LetPQRbeatrianglewithR(−1,4,2).SupposeM(2,1,2)isthemid
pointofPQ.ThedistanceofthecentroidofPQRfromthepointof
intersectionoftheline x2
0=y
2=z+3
1and x1
1=y+3
3=z+1
1is
[29-Jan-2024Shift1]
Options:
A.69
B.9
C.69
D.99
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question9
Alinewithdirectionratios2,1,2meetsthelinesx =y+2=zand
x+2=2y =2zrespectivelyatthepointPandQ.ifthelengthofthe
perpendicularfromthepoint(1,2,12)tothelinePQisl ,thenl 2is
[29-Jan-2024Shift1]
Answer:65
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question10
LetP(3,2,3), Q(4,6,2)andR(7,3,2)betheverticesofPQR.Then,
theangleQPRis
[29-Jan-2024Shift2]
Options:
A. π
6
B.cos17
18
C.cos11
18
D. π
3
Answer:D
( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question11
LetObetheorigin,andMandNbethepointsonthelines
x5
4=y4
1=z5
3and x+8
12 =y+2
5=z+11
9respectivelysuchthatMNisthe
shortestdistancebetweenthegivenlines.Then
OM
ONisequalto
[29-Jan-2024Shift2]
Answer:9
Solution:
-------------------------------------------------------------------------------------------------
Question12
Let(α,β,γ)bethefootofperpendicularfromthepoint(1,2,3)onthe
line x+3
5=y1
2=z+4
3.then19(α+β+γ)isequalto:
[30-Jan-2024Shift1]
Options:
A.102
B.101
C.99
D.100
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question13
Ifd 1istheshortestdistancebetweenthelines
x+1=2y = 12z,x=y+2=6z 6andd 2istheshortestdistance
betweenthelines x1
2=y+8
7=z4
5,x1
2=y2
1=z6
3,thenthevalueof
323d1
d2is:__
[30-Jan-2024Shift1]
Answer:16
Solution:
Question14
LetL1:
r=^
i^
j+2^
k+λ^
i^
j+2^
k,λR
L2:
r=^
j^
k+µ 3^
i+^
j+p^
k,µRand
L3:
r=δ^
i+m hat j +n^
kδR
BethreelinessuchthatL1isperpendiculartoL2andL3is
perpendiculartobothL1andL2.ThenthepointwhichliesonL3is
[30-Jan-2024Shift2]
Options:
A.(−1,7,4)
B.(−1, 7,4)
C.(1,7, 4)
D.(1, 7,4)
Answer:A
Solution:
( ) ( )
( ) ( )
( )
Question15
Letalinepassingthroughthepoint(−1,2,3)intersectthelines
L1:x1
3=y2
2=z+1
2atM(α,β,γ)andL2:x+2
3=y2
2=z1
4atN(a,b,c).
Thenthevalueof (α+β+γ)2
(a+b+c)2equals
[30-Jan-2024Shift2]
Answer:196
Solution:
-------------------------------------------------------------------------------------------------
Question16
ThedistanceofthepointQ(0,2, 2)formthelinepassingthroughthe
pointP(5, 4,3)andperpendiculartothelines
r= 3^
i+2^
k+
λ 2^
i+3^
j+5^
k,λ and
r=^
i2^
j+^
k+µ ^
i+3^
j+2^
k,µ is
[31-Jan-2024Shift1]
Options:
A.86
B.20
C.54
D.74
Answer:D
Solution:
( )
( ) ( ) ( )
Solution:
Avectorinthedirectionoftherequiredlinecanbeobtainedbycrossproductof
-------------------------------------------------------------------------------------------------
Question17
LetQandRbethefeetofperpendicularsfromthepointP(a,a,a)on
thelinesx =y,z=1andx = y,z = 1respectively.IfQPRisaright
angle,then12a2isequalto____
[31-Jan-2024Shift1]
Answer:12
Solution:
-------------------------------------------------------------------------------------------------
Question18
Let(α,β,γ)bemirrorimageofthepoint(2,3,5)intheline
x1
2y2
3z3
4.
Then2α + +4γisequalto
[31-Jan-2024Shift2]
Options:
A.32
B.33
C.31
D.34
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question19
TheshortestdistancebetweenlinesL1andL2,where
L1:x1
2=y+1
3=z+4
2andL2isthelinepassingthroughthepoints
A(−4,4,3) B(−1,6,3)andperpendiculartotheline x3
2=y
3=z1
1,is
[31-Jan-2024Shift2]
Options:
A. 121
221
B. 24
117
C. 141
221
D. 42
117
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question20
AlinepassesthroughA(4, 6, 2)andB(16, 2,4).ThepointP(a,b,c)
wherea,b,carenon-negativeintegers,onthelineABliesatadistance
of21units,fromthepointA.ThedistancebetweenthepointsP(a,b,c)
andQ(4, 12,3)isequalto
[31-Jan-2024Shift2]
Answer:22
Solution:
-------------------------------------------------------------------------------------------------
Question21
Iftheshortestdistancebetweenthelines xλ
2=y2
1=z1
1and
x 3
1=y1
2=z2
1is1,thenthesumofallpossiblevaluesofλis:____
[1-Feb-2024Shift1]
Options:
A.0
B.23
C.33
D.23
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question22
Letthelineoftheshortestdistancebetweenthelines
L1:
r=^
i+2^
j+3^
k+λ^
i^
j+^
kand
L2:
r=4^
i+5^
j+6^
k+µ^
i+^
j^
k
intersectL1andL2atPandQrespectively.If(α,β,γ)isthemidpointof
thelinesegmentPQ,then2(α+β+γ)isequalto____
[1-Feb-2024Shift1]
( ) ( )
( ) ( )
Answer:21
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question23
LetPandQbethepointsontheline x+3
8=y4
2=z+1
2whichareata
distanceof6unitsfromthepointR(1,2,3).Ifthecentroidofthe
trianglePQRis(α,β,γ),thenα2+β2+γ2is:
[1-Feb-2024Shift2]
Options:
A.26
B.36
C.18
D.24
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question24
IfthemirrorimageofthepointP(3,4,9)intheline x1
3=y+1
2=z2
1is
(α,β,γ),then14(α+β+γ)is:
[1-Feb-2024Shift2]
Options:
A.102
B.138
C.108
D.132
Answer:C
Solution:
Solution:
P( 3, +4, 1)
PR =6
( 4)2+ ( +2)2+ ( 4)2=36
λ=0,1
Hence P(−3,4, 1)&Q(5,6,1)
Centroidof PQR = (1,4,1)≡(α,β,γ)
α2+β2+γ2=18
PN
b=0?
3( 2) + 2( 5) + (λ7) = 0
14λ =23 λ=23
14
N83
14,32
14,51
14
α+3
2=83
14 α=62
7
β+4
2=32
14 β=4
7
( )
-------------------------------------------------------------------------------------------------
Question25
Thedistanceofthepoint(−1,9, 16)fromtheplane2x +3y z=5
measuredparalleltotheline x+4
3=2y
4=z3
12 is
[24-Jan-2023Shift1]
Options:
A.132
B.31
C.26
D.202
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question26
Thedistanceofthepoint(7, 3, 4)fromtheplanepassingthrough
thepoints(2, 3,1), (−1,1, 2)and(3, 4,2)is:
[24-Jan-2023Shift1]
Options:
A.4
B.5
C.52
D.42
Answer:C
Solution:
γ+9
2=51
14 γ=12
7
Ans.14(α+β+r) = 108
Equationofline
x+1
3=y9
4=z+16
12
G.Ponline( 1, +9,12λ 16)
pointofintersectionofline&plane
212λ +27 12λ +16 =5
λ=2
Point(5,1,8)
Distance = 36 +64 +576 =26
Solution:
-------------------------------------------------------------------------------------------------
Question27
Theshortestdistancebetweenthelines x2
3=y+1
2=z6
2and
x6
3=1y
2=z+8
0isequalto
[24-Jan-2023Shift1]
Answer:14
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question28
Ifthefootoftheperpendiculardrawnfrom(1,9,7)tothelinepassing
throughthepoint(3,2,1)andparalleltotheplanesx +2y +z=0and
3y z=3is(α,β,γ),thenα +β+γisequalto
[24-Jan-2023Shift2]
Options:
A.1
B.3
C.1
EquationofPlaneis
=
x2 y +3 z 1
3 4 3
45 4
=0
xz1=0
DistanceofP(7, 3, 4)fromPlaneis
d=7+41
2=52
| |
| |
=
4 2 14
3 2 2
320
^
i^
jk
3 2 2
320
= 16 +12 +168
4^
i+6^
j12k
=196
14 =14
| |
| |
| |
D.5
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question29
Lettheplanecontainingthelineofintersectionoftheplanes
P1 :x+ (λ+4)y+z=1and
P2 :2x +y+z=2passthroughthepoints(0,1,0)and(1,0,1).
Thenthedistanceofthepoint(,λ, λ)fromtheplaneP2is
[24-Jan-2023Shift2]
Lettheplanecontainingthelineofintersectionoftheplanes
P1 :x+ (λ+4)y+z=1and
P2 :2x +y+z=2passthroughthepoints(0,1,0)and(1,0,1).
Thenthedistanceofthepoint(,λ, λ)fromtheplaneP2is
[24-Jan-2023Shift2]
Options:
A.56
B.46
C.26
D.36
Answer:D
Directionratioofline =
^
i^
j^
k
1 2 1
0 3 1
=^
i(−5) ^
j(−1) + ^
k(3)
= 5^
i+^
j+3^
k
M(− +3,λ+2, +1)
PM5^
i+^
j+3^
k
5(− +2) + (λ7) + 3( 6) = 0
25λ +λ+ 10 718 =0
λ=1
Point M = (−2,3,4) = (α,β,γ)
α+β+γ=5
| |
( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question30
Iftheshortestbetweenthelines x+ 6
2=y 6
3=z 6
4and
xλ
3=y26
4=z+26
5is6,thenthesquareofsumofallpossiblevaluesof
λis
[24-Jan-2023Shift2]
Answer:384
Solution:
-------------------------------------------------------------------------------------------------
Question31
EquationofplanepassingthroughpointofintersectionofP1andP2
P=P1 +kP 2
(x+ (λ+4)y+z1) + k(2x +y+z2) = 0
Passingthrough(0,1,0)and(1,0,1)
(λ+41) + k(12) = 0
(λ+3) k=0...(1)
Alsopassing(1,0,1)
(1+11) + k(2+12) = 0
1+k=0
k= 1
putin(1)
λ+3+1=0
λ= 4
Thenpoint(,λ, λ)
d=16 4, 4,4)
6
d=18
6×6
6=36
| |
Shortestdistancebetweenthelines
x+ 6
2=y 6
3=z 6
4xλ
3=y26
4=2+26
5is6
Vectoralonglineofshortestdistance
=
i j k
234
345
, ^
i+2^
jk(itsmagnitudeis√6)
Now 1
6
6+λ636
2 3 4
3 4 5
= ±6
λ= 26,106
So,squareofsumofthesevaluesis384.
| |
| |
ConsiderthelinesL1andL2givenby
L1:x1
2=y3
1=z2
2
L2:x2
1=y2
2=z3
3
AlineL3havingdirectionratios1, 1, 2,intersectsL1andL2atthe
pointsPandQrespectively.ThenthelengthoflinesegmentPQis
[25-Jan-2023Shift1]
Options:
A.26
B.32
C.43
D.4
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question32
ThedistanceofthepointP(4,6, 2)fromthelinepassingthroughthe
point(−3,2,3)andparalleltoalinewithdirectionratios3,3, 1is
equalto:
[25-Jan-2023Shift1]
Options:
A.3
B.6
C.23
D.14
Answer:D
Solution:
LetP= ( +1,λ+3, +2)
LetQ= (µ+2, +2, +3)
µ1
1=λ +1
1= 1
2
λ=µ=3P(7,6,8)and Q(5,8,12)
PQ =26
Question33
Lettheequationoftheplanepassingthroughtheline
x2y z5=0=x+y+3z 5andparalleltotheline
x+y+2z 7=0=2x +3y +z2beax +by +cz =65.Thenthedistance
ofthepoint(a,b,c)fromtheplane2x +2y z+16 =0is_______.
[25-Jan-2023Shift1]
Answer:9
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question34
Thefootofperpendicularofthepoint(2,0,5)ontheline
x+1
2=y1
5=z+1
1is(α,β,γ).Then.WhichofthefollowingisNOT
correct?
[25-Jan-2023Shift2]
Options:
A. αβ
γ=4
15
Equationoflineis x+3
3=y2
3=z3
1=λ
M( 3, +2,3λ)
D.RofPM( 7, 4,5λ)
SincePMisperpendiculartoline
3( 7) + 3( 4) 1(5λ) = 0
λ=2
M(3,8,1) PM = 14
Equationofplaneis
(x2y z5) + b(x+y+3z 5) = 0
1+b2+b1+3b
1 1 2
2 3 1
=0
b=12
planeis 13x +10y +35z =65
Distancefromgivenpointtoplane = 9
| |
B. α
β= 8
C. β
γ= 5
D. γ
α=5
8
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question35
Theshortestdistancebetweenthelinesx +1=2y = 12zand
x=y+2=6z 6is
[25-Jan-2023Shift2]
Options:
A.2
B.3
C. 5
2
D. 3
2
Answer:A
Solution:
L:x+1
2=y1
5=z+1
1=λ(let)
Letfootofperpendicularis
P( 1, +1, λ1)
PA = (3)^
i ( +1)^
j+ (6+λ)^
k
Directionratioofline⇒
b=2^
i+5^
j^
k
Now,
PA
b=0
2(3) 5( +1) (6+λ) = 0
λ=1
6
P( 1, +1, λ1) P(α,β,γ)
α=21
61= 4
3α= 4
3
β=51
6+1=1
6β=1
6
γ= λ1=1
61γ= 5
6
∴Checkoptions
( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question36
Iftheshortestdistancebetweenthelinejoiningthepoints(1,2,3)and
(2,3,4),andtheline x1
2=y+1
1=z2
0isα,then28α2isequalto_______.
[25-Jan-2023Shift2]
Answer:18
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question37
Lettheco-ordinatesofonevertexofABCbeA(0,2,α)andtheother
twoverticeslieontheline x+α
5=y1
2=z+4
3.Forα ,iftheareaof
x+1
1=y
1
2
=z
1
12
and x
1=y+2
1=z1
1
6
Shortestdistance =
b
a
p×
q
p×
q
S.D. = ^
i+2^
j^
k
p×
q
p×
q
p×
q^
i,^
j,^
k;1,1
2,1
12 ;1,1,1
6=1
6
^
i1
4
^
j+1
2
^
k or 2^
i3^
j+6^
k
S.D. =^
i+2^
j^
k2^
i3^
j+6^
k
22+32+62=14
7=2
( ) ( )
| |
( ) ( )
| |
{ | |}
( ) ( )
| |
r=^
i+2^
j+3^
k+λ^
i+^
j+^
k
r=
a+λ
p
r= +^
i^
j+2^
k+µ 2^
i^
j
r=
b+µ
q
p×
q=
^
i^
j^
k
111
210
= ^
i+2^
j3^
k
d=
b
a
p×
q
p×
q
d=3^
j^
k^
i+2^
j3^
k
14
=6+3
14 =3
14
α=3
14
Now,28α2=22×9
14 =18
( ) ( )
( ) ( )
| |
|( ) ( )
| | |
|( ) ( ) |
| |
ABCis21sq.unitsandthelinesegmentBChaslength221units,
thenα2isequalto_______.
[29-Jan-2023Shift1]
Answer:9
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question38
LettheequationoftheplanePcontainingthelinex +10 =8y
2=zbe
ax +by +3z =2(a+b)andthedistanceoftheplanePfromthepoint
(1,27,7)bec.Thena2+b2+c2isequalto________.
[29-Jan-2023Shift1]
Answer:355
Solution:
-------------------------------------------------------------------------------------------------
Question39
Theplane2x y+z=4intersectsthelinesegmentjoiningthepoints
A.(O12,α)
( +5)2+ ( +20)2+ ( 5)2= 2138
12α2+80α +450 =798
12α2+80α 348 =0
α=3α2=9
Theline x+10
1=y8
2=z
1haveapoint(−10,8,0)withd.r.(1, 2,1)
∵theplaneax +by +3z =2(a+b)
b=2a
&dotproductofd.r.'siszero
a2b +3=0
a=1&b=2
Distancefrom(1,27,7)is
c=1+54 +21 6
14 =70
14 =514
a2+b2+c2=1+4+350
=355
A(a, 2,4)andB(2,b, 3)atthepointCintheratio2 :1andthe
distanceofthepointCfromtheoriginis5.Ifab <0andPisthepoint
(ab,b,2b a)thenCP2isequalto:
[29-Jan-2023Shift2]
Options:
A. 17
3
B. 16
3
C. 73
3
D. 97
3
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question40
Shortestdistancebetweenthelines x1
2=y+8
7=z4
5and
x1
2=y2
1=z6
3is
[29-Jan-2023Shift2]
Options:
A.23
B.43
A(a, 2,4), B(2,b, 3)
AC :CB =2:1
Ca+4
3,2b 2
3,2
3
Clieson2x y+2=4
2a +8
32b 2
32
3=4
ab=2... (1)
AlsoOC = 5
a+4
3
2+2b 2
3
2+4
9=5...(2)
Solving,(1)and(2)
(b+6)2+ (2b 2)2=41
5b2+4b 1=0
b= 1 or 1
5
a=1 or 11
5
Butab <0 (a,b) = (1, 1)
C5
3,4
3,2
3,P (2, 1, 3)
CP2=1
9+1
9+49
9=51
9=17
3
( )
( ) ( )
( )
C.33
D.53
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question41
Ifthelines x1
1=y2
2=z+3
1and xa
2=y+2
3=z3
1intersectsatthepoint
P,thenthedistanceofthepointPfromtheplanez =ais:
[29-Jan-2023Shift2]
Options:
A.16
B.28
C.10
D.22
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
x1
2=y+8
7=z4
5
a=i8
^
^
j+4^
k
x1
2=y2
1=z6
3
b=^
i+2^
j+6^
k
p=2^
i7^
j+5^
k,
q=2^
i+^
j3^
k
p×
q=
^
i^
j^
k
275
2 1 3
=^
i(16) ^
j(−16) + ^
k(16)
=16 ^
i+^
j+^
k
=12
3=43
| |
( )
| |
PointonL1 (λ+1, +2,λ3)
PointonL2 ( +a, 2,µ+3)
λ3=µ+3λ=µ+6...(1)
+2= 2 = 4...(2)
Solving,(1)and(2)
λ=22&µ=16
P (23,46,19)
a= 9
DistanceofPfromz= 9is28
Question42
Letaunitvector
OPmakeangleα,β,γwiththepositivedirectionsofthe
co-ordinateaxesOX,OY,OZrespectively,whereβ 0,π
2
OPis
perpendiculartotheplanethroughpoints(1,2,3),(2,3,4)and
(1,5,7),thenwhichoneofthefollowingistrue?
[30-Jan-2023Shift1]
Options:
A.α π
2,π andγ π
2,π
B.α 0,π
2andγ 0,π
2
C.α π
2,π andγ 0,π
2
D.α 0,π
2andγ π
2,π
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question43
Thelinel 1passesthroughthepoint(2,6,2)andisperpendiculartothe
plane2x +y2z =10.Thentheshortestdistancebetweenthelinel 1
andtheline x+1
2=y+4
3=z
2is:
[30-Jan-2023Shift1]
Options:
A.7
( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
Equationofplane:-
x1 y 2 z 3
1 1 1
0 3 4
=0
[x1] 4[y2] + 3[z3] = 0
x4y +3z =2
D.R'sofnormalofplane<1, 4,3>
D.C'sof ± 1
26 , 4
26 , ± 3
26
cos β =4
26
cos α =1
26
π
2<α<π
cos γ =3
26
π
2<γ<π
| |
B. 19
3
C. 19
3
D.9
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question44
Iftheequationoftheplanepassingthroughthepoint(1,1,2)and
perpendiculartothelinex 3y +2z 1=0 4x y+zis
Ax +By +Cz =1,then140(CB+A)isequalto_______.
[30-Jan-2023Shift1]
Answer:15
Solution:
Solution:
Lineℓ,isgivenby
L1:x2
2=y6
1=z2
2
Given,
L2:x+1
2=y+4
3=z
2
Shortestdistance =
AB
MN
MN
AB =3^
i+10 ^
j+2^
k
MN =
^
i^
j^
k
2 1 2
232
= 4^
i8^
j8^
k
MN = 16 +64 +64 =12
Shortestdistance =12 80 16
12 =9
Option(4)iscorrect.
| |
| |
| |
x3y +2z 1=0
4x y+z=0
-------------------------------------------------------------------------------------------------
Question45
Ifλ1<λ2aretwovaluesofλsuchthattheanglebetweentheplanes
P1:r 3 ^
i5^
j+^
k=7andP2:
rλ^
i+^
j3^
k=9issin 126
5,then
thesquareofthelengthofperpendicularfromthepoint(38λ1,10λ2,2)
totheplaneP1is_______.
[30-Jan-2023Shift1]
Answer:315
Solution:
( ) ( ) ( )
n1×n2=
^
i^
j^
k
13 2
41 1
= ^
i+7^
j+11 ^
k
Dreofnormaltotheplaneis−1,7,11
Equationofplane:
1(x1) + 7(y1) + 11(z2) = 0
x+7y +11z =28
1
28 x+7y
28 +11z
28 =1
Ax +By +Cz =1
140(CB+A) = 140 11
28 7
28 1
28
=140×3
28 =15
| |
( )
-------------------------------------------------------------------------------------------------
Question46
Avector
vinthefirstoctantisinclinedtothexaxisat60,tothey-axis
at45andtothez-axisatanacuteangle.Ifaplanepassingthroughthe
points(√2, 1,1)and(a,b,c),isnormalto
v,then
[30-Jan-2023Shift2]
Options:
A.2a+b+c=1
B.a +b+ 2c=1
C.a + 2b+c=1
D.2ab+c=1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question47
Ifaplanepassesthroughthepoints(−1,k,0), (2,k, 1),(1,1,2)andis
paralleltotheline x1
1=2y +1
2=z+1
1,thenthevalueof k2+1
(k1)(k2)is
Perpendiculardistanceofpoint
(38λ1,10λ2,2) (50,50,2)fromplaneP1
=|3×50 5×50 +27|
35 =105
35
Square =105 ×105
35 =315
^
v=cos 60^
i+cos 45^
j+cos γ ^
k
1
4+1
2+cos2γ=1(γAcute )
cos γ =1
2
γ=60
Equationofplaneis
1
2(x 2) + 1
2(y+1) + 1
2(z1) = 0
x+ 2y +z=1
(a,b,c)liesonit.
a+ 2b +c=1
[30-Jan-2023Shift2]
Options:
A. 17
5
B. 5
17
C. 6
13
D. 13
6
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question48
LetalineLpassthroughthepointP(2,3,1)andbeparalleltotheline
x+3y 2z 2=0=xy+2z.IfthedistanceofLfromthepoint
(5,3,8)isα,then3α2isequalto_______.
[30-Jan-2023Shift2]
Answer:158
Solution:
x1
1=2y +1
2=z+1
1
x1
1=
y+1
2
1=z+1
1
Points:A (−1,k,0), B(2,k, 1), C(1,1,2)
CA = 2^
i+ (k1)^
j2^
k
CB =^
i+ (k1)^
j3^
k
CA ×
CB =
^
i^
j^
k
2 k 12
1k13
=^
i(−3k +3+2k 2) ^
j(6+2) + ^
k(−2k +2k+1)
= (1k)^
i8^
j+ (33k)^
k
Theline x1
1=
y+1
2
1=z+1
1isperpendiculartonormalvector.
1 (1k) + 1(−8) + (−1)(33k) = 0
1k83+3k =0
2k =10 k=5
k2+1
(k1)(k2)=26
43=13
6
| |
Solution:
-------------------------------------------------------------------------------------------------
Question49
LettheshortestdistancebetweenthelinesL :x5
2=yλ
0=z+λ
1,λ0
andL1:x+1=y1 =4zbe26.If(α,β,γ)liesonL,thenwhichof
thefollowingisNOTpossible?
[31-Jan-2023Shift1]
Options:
A.α + =24
B.2α +γ=7
C.2α γ=9
D.α =19
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question50
LetθbetheanglebetweentheplanesP1=
r
i+
i+2
k=9and
( )
^
i^
j^
k
1 3 2
11 2
=4^
i4^
j4^
k
∴Equationoflineis x2
1=y3
1=z1
1
LetQbe(5,3,8)andfootoffromQonthislinebeR.
Now,R (k+2, k+3, k+1)
DRofQRare(k3, k, k7)
(1)(k3) + (−1)(−k) + (−1)(−k7) = 0
k= 4
3
α2=13
3
2+4
3
2+17
3
2=474
9
2=158
| |
( ) ( ) ( )
b1×
b2=
^
i^
j^
k
20 1
1 1 1
= ^
i^
j2^
k
a2a1=6^
i+ (λ1)^
j+ (−λ4)^
k
26=6λ+1+ +8
1+1+4
|λ+3| = 12 λ=9, 15
α= 2k +5,γ=kλ where k R
α+ =5 = 13,35
| |
| |
P2=
r2
i
i+
k=15.
LetLbethelinethatmeetsP2atthepoint(4, 2,5)andmakesan
angleθwiththenormalofP2.IfαistheanglebetweenLandP2then
(tan2θ)(cot2α)isequalto_______.
[31-Jan-2023Shift1]
Answer:9
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question51
LetthelineL :x1
2=y+1
1=z3
1intersecttheplane2x +y+3z =16at
thepointP.LetthepointQbethefootofperpendicularfromthepoint
R(1, 1, 3)onthelineL.IfαistheareaoftrianglePQR.thenα2is
equalto________.
[31-Jan-2023Shift1]
Answer:180
Solution:
( )
cos θ =
^
i+^
j+2^
k2^
i^
j+^
k
6=21+2
6=1
2
θ=π3 α =π6
(tan2θ)(cot2α)
(3)(3)=9
( ) ( )
AnypointonL(( +1), (−λ1), (λ+3))
2( +1) + (−λ1) + 3(λ+3) = 16
-------------------------------------------------------------------------------------------------
Question52
IfapointP(α,β,γ)satisfying(αβγ)
2 10 8
9 3 8
8 4 8
= ( 000)liesonthe
plane2x +4y +3z =5,then6α + +7γisequalto:
[31-Jan-2023Shift2]
Options:
A.1
B. 11
5
C. 5
4
D.11
Answer:D
Solution:
Solution:
( )
+10 =16 λ=1
P= (3, 2,4)
DRofQR = , λ,λ+6
DRofL= 2, 1,1
+λ+λ+6=0 +6=0λ= 1
Q= (−1,0,2)
QR =2^
i^
j5^
k
QP =4^
i2^
j+2^
k
QR ×
QP =
^
i^
j^
k
215
42 2
= 12 ^
i24 ^
j
α=1
2× 144 +576 α2=720
4=180
| |
+ + =5...(1)
-------------------------------------------------------------------------------------------------
Question53
LettheplaneP :8x +α1y+α2z+12 =0beparalleltotheline
L:x+2
2=y3
3=z+4
5.IftheinterceptofPonthey-axisis1,thenthe
distancebetweenPandLis:
[31-Jan-2023Shift2]
Options:
A.14
B. 6
14
C. 2
7
D. 7
2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
+ + =0...(2)
10α + + =0...(3)
+ + =0...(4)
Subtract(4)from(2)
+β=0
β=...(5)
Fromequation(4)
+48α + =0
γ= ...(6)
Fromequation(1)
+24α 21α =5
=5
α=1
β= +6,γ= 7
+ +
=6+54 49
=11
P:8x +α1y+α2z+12 =0
L: x+2
2=y3
3=z+4
5
PisparalleltoL
8(2) + α1(3) + 5(α2) = 0
1+5(α2) = 16
Alsoy-interceptofplanePis1
α1= 12
Andα2=4
⇒EquationofplanePis2x 3y +z+3=0
⇒DistanceoflineLfromPlanePis
=03(6) + 1+3
4+9+1
= 14
| |
Question54
LetPbetheplane,passingthroughthepoint(1, 1, 5)and
perpendiculartothelinejoiningthepoints(4,1, 3)and(2,4,3).Then
thedistanceofPfromthepoint(3, 2,2)is
[31-Jan-2023Shift2]
Options:
A.6
B.4
C.5
D.7
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question55
Theshortestdistancebetweenthelines x5
1=y2
2=z4
3and
x+3
1=y+5
4=z1
5is
[1-Feb-2023Shift1]
Options:
A.73
B.53
C.63
D.43
Answer:C
Solution:
Solution:
EquationofPlane:
2(x1) 3(y+1) 6(z+5) = 0
Or 2x 3y 6z =35
Requireddistance =
|2(3) 3(−2) 6(2) 35|
4+9+36
=5
Shortestdistancebetweentwolines
xx1
a1
=yy1
a2
=zz1
a3&
-------------------------------------------------------------------------------------------------
Question56
LettheimageofthepointP(2, 1,3)intheplanex +2y z=0beQ.
Thenthedistanceoftheplane3x +2y +z+29 =0fromthepointQis
[1-Feb-2023Shift1]
Options:
A. 222
7
B. 242
7
C.214
D.314
Answer:D
Solution:
Solution:
xx2
b1
=yy2
b2
=zz2
b3
isgivenas
x1x2y1y2z1z2
a1a2a3
b1b2b3
(a1b3a3b2)2+ (a1b3a3b1)2+ (a1b2a2b1)2
5 (3)2 (−5)41
1 2 3
1 4 5
(−10 +12)2+ (−5+3)2+ (42)2
8 7 3
123
145
(2)2+ (2)2+ (2)2
=|8(−10 +12) 7(−5+3) + 3(42)|
4+4+4
=16 +14 +6
12 =36
12 =36
23
=18
3=63
| |
| |
| |
-------------------------------------------------------------------------------------------------
Question57
LettheplanePpassthroughtheintersectionoftheplanes
2x +3y z=2andx +2y +3z =6,andbeperpendiculartotheplane
2x +yz+1=0.Ifd isthedistanceofPfromthepoint(−7,1,1),then
d2isequalto:
[1-Feb-2023Shift2]
Options:
A. 250
83
B. 15
53
C. 25
83
D. 250
82
Answer:A
Solution:
Solution:
eq.oflinePM x2
1=y+1
2=z3
1=λ
anypointonline = (λ+2, 1, λ+3)
forpoint'm'(λ+2) + 2( 1) (3λ) = 0
λ=1
2
Pointm1
2+2,2×1
21,1
2+3
=5
2,0,5
2
ForImageQ(α,β,γ)
α+2
2=5
2,β1
2=0,
γ+3
2=5
2
Q: (3,1,2)
d=3(3) + 2(1) + 2+29
32+22+12
d=42
14 =314
( )
( )
||
PP1+λP2=0
(2+λ)x+ (3+)y+ ( 1)z2 =0
Plane P isperpendicularto P3
n
n3=0
2(λ+2) + ( +3) ( 1) = 0
λ= 8
P 6x 13y 25z +46 =0
6x +13y +25z 46 =0
Distfrom (−7,1,1)
d= 42 +13 +25 46
36 +169 +625 = 50
830
d2=50 ×50
830 =250
83
Question58
ThepointofintersectionCoftheplane8x +y+2z =0andtheline
joiningthepointsA(−3, 6,1)andB(2,4, 3)dividesthelinesegment
ABinternallyintheratiok :1.Ifa,b,c( |a|, | b|,|c|arecoprime)are
thedirectionratiosoftheperpendicularfromthepointContheline
1x
1=y+4
2=z+2
3,then|a+b+c|isequalto_______.
[1-Feb-2023Shift2]
Answer:10
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question59
Letαx +βy +yz =1betheequationofaplanepassingthroughthepoint
(3, 2,5)andperpendiculartothelinejoiningthepoints(1,2,3)and
(−2,3,5).Thenthevalueofαβyisequalto______.
[1-Feb-2023Shift2]
Plane:8x +y+2z =0
GivenlineAB :x2
5=y4
10 =z+3
4=λ
Anypointonline( +2,10λ +4, 3)
Pointofintersectionoflineandplane
8( +2) + 10λ +4 6=0
λ= 1
3
C1
3,2
3, 5
3
L:x1
1=y+4
2=z+2
3=µ
( )
CD = µ+2
3
^
i+ 14
3
^
j+ 1
3
^
k
µ+2
3(−1) + 14
32+ 1
33=0
µ=11
14
CD =5
42 ,130
42 ,85
42
Directionratios (−1, 26,17)
|a+b+c| = 10
( ) ( ) ( )
( ) ( ) ( )
Answer:6
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question60
OnevertexofarectangularparallelepipedisattheoriginOandthe
lengthsofitsedgesalongx,yandzaxesare3,4and5units
respectively.LetPbethevertex(3,4,5).Thentheshortestdistance
betweenthediagonalOPandanedgeparalleltozaxis,notpassing
throughOorPis:
[6-Apr-2023shift1]
Options:
A. 12
55
B.125
C. 12
5
D. 12
5
Answer:C
Solution:
GivenEquationisnotequationofplaneasyzispresent.Ifweconsideryisγthenanswerwouldbe6.
Normalvectorofplane = 3
i
j2
k
Plane:3x y2z +λ=0
Point(3, 2,5)satisfiestheplane
λ= 1
3x y2z =1
αβy =6
EquationofOPis x
3=y
4=z
5
a1= (0,0,0)a2= (3,0,5)
b1= (3,4,5)b2= (0,0,1)
Equationofedgeparalleltozaxis
x3
0=y0
0=z5
1
S.D=
a2
a1
b1×
b2
b1×
b2
( ) ( )
| |
-------------------------------------------------------------------------------------------------
Question61
Iftheequationoftheplanepassingthroughthelineofintersectionof
theplanes2x y+z=3,4x 3y +5z+9 =0andparalleltotheline
x+1
2=y+3
4=z2
5isax +by +cz +6=0,thena +b+cisequalto:
[6-Apr-2023shift1]
Options:
A.15
B.14
C.13
D.12
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question62
LettheimageofthepointP(1,2,3)intheplane2x y+z=9beQ.If
thecoordinatesofthepointRare(6,10,7).thenthesquareofthearea
ofthetrianglePQRis_______.
[6-Apr-2023shift1]
305
345
001
^
i^
j^
k
345
001
= 3(4)
4^
i3^
j
=12
5
| |
| | | |
Usingfamilyofplaner
P:P1+λP2=0P(2+)x (1+)y+ (1+)z= (3)
Pis|to x+1
2=y+3
4=z2
5
Thenforλ:
np
vL=0
2(2+) 4(1+) + 5(1+) = 0
3+ =0λ=3
5
Hence:P:22x 14y +20z = 12
P:11x 7y +10z +6=0
a=11
b= 7
c=10
a+b+c=14
Answer:594
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question63
LetthelineLpassthroughthepoint(0,1,2),intersecttheline
x1
2=y2
3=z3
4andbeparalleltotheplane2x +y3z =4.Thenthe
distanceofthepointP(1, 9,2)fromthelineLis:
[6-Apr-2023shift2]
Options:
A.9
B.54
C.69
D.74
Answer:D
Solution:
Solution:
LetQ(α,β,γ)betheimageofP,abouttheplane
2x y+z=9
α1
2=β2
1=γ3
1=2
α=5,β=0,γ=5
ThenareaoftrianglePQRis = 1
2
PQ ×
PR
= 12^
i3^
j+21^
k= 144 +9+441 = 594
Squareofarea = 594
| |
| |
PQ = ( +1, +1, +1)
PQ
n=0 ( +1) (2) + ( +1)(1) + ( +1)(−3) = 0
=0
λ=0
Q = (1,2,3)
x0
1=y1
1=z2
1=µ
-------------------------------------------------------------------------------------------------
Question64
AplanePcontainsthelineofintersectionoftheplane
r^
i+^
j+^
k=6
and
r2^
i+3^
j+4^
k= 5.IfPpassesthroughthepoint(0,2, 2),then
thesquareofdistanceofthepoint(12,12,18)fromtheplanePis:
[6-Apr-2023shift2]
Options:
A.620
B.1240
C.310
D.155
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question65
( )
( )
distanceoflinefrom(1, 9,2)
(PQ) (1,1,1) = 0
[µ1,µ+10,µ] [1,1,1] = 0
µ1+µ+10 +µ=0
µ= 3
Q= (−3, 2,1)
PQ= 16 +49 +9= 74
eqnofplane P1+λP2=0
(x+y+z6) + λ(2x +3y +4z +5) = 0
passth.(0,2, 2)
(−6) + λ(68+5) = 0
(−6) + λ[3] = 0⇒λ=2
eqnofplane
5x +7y +9z +4=0
distancefrom(12,12,18)
d=60 +84 +162 +4
25 +49 +81
d=310
155
d2=310 ×310
155
d2=620
Ans.Option1
| |
Ifthelines x1
2=2y
3=z3
αand x4
5=y1
2=z
βintersect,thenthe
magnitudeoftheminimumvalueof8αβis_______.
[6-Apr-2023shift2]
Answer:18
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question66
Theshortestdistancebetweenthelines x4
4=y+2
5=z+3
3and
x1
3=y3
4=z4
2is
[8-Apr-2023shift1]
Options:
A.26
B.36
C.63
D.62
Answer:B
Solution:
Ifthelines x1
2=2y
3=z3
αand x4
5=y1
2=z
βintersectPointoffirstline(1,2,3)andpointonsecondline
(4,1,0).
Vectorjoiningbothpointsis−3^
i+^
j+3k
Nowvectoralongsecondlineis2^
i+3^
j+αk
Alsovectoralongsecondlineis5^
i+2^
j+βk
Nowthesethreevectorsmustbecoplanar
2 3 α
5 2 β
31 3
2(6β) 3(15 +) + α(11) = 0
αβ=3
Now α =3+β
Givenexpression 8(3+β) β=8(β2+)
=8 β2+ +9
49
4=8 β +3
2
218
Somagnitudeofminimumvalue = 18
| |
( ) ( )
-------------------------------------------------------------------------------------------------
Question67
Iftheeqationoftheplanecontainingtheline
x+2y +3z 4=02x +yz+5andperpendiculartotheplane
r=^
i^
j+λ^
i+^
j+^
k+µ^
i2^
j+3^
kisax+by+cz =4,then
(ab+c)isequalto
[8-Apr-2023shift1]
Options:
A.22
B.24
C.20
D.18
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question68
Letλ1,λ2bethevaluesofλforwhichthepoints 5
2,1,λ and
(−2,0,1)areatequaldistancefromtheplane2x+3y 6z +7=0.If
( ) ( ) ( )
( )
Sd=
a
b×
n1×
n2
n1×
n2
a= (4, 2, 3)
b= (1,3,4)
n1= (4,5,3)
n2= (3,4,2)
n1×n2=
i j k
453
342
=^
i(−2) ^
j(−1) + ^
k(1) = (−2,1,1)
Sd=(3, 5, 7) (−2,1,1)
6=657
6=36
|( ) ( )
| | |
| |
| |
D.R'sofline
n1= 5^
i+7^
j3^
k
D.R'sofnormalofsecondplane
n2=5^
i2^
j3^
k
n1×
n2= 27^
i30^
j25^
k
Apointontherequiredplaneis 0, 11
5,14
5
Theequationofrequiredplaneis
27x +30y +25z =4
ab+c=22
( )
λ1>λ2,thenthedistanceofthepoint(λ1λ2,λ2,λ1)fromtheline
x5
1=y1
2=z+7
2is________.
[8-Apr-2023shift1]
Answer:9
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question69
Fora,bZand|ab| 10,lettheanglebetweentheplane
P:ax +yz=bandtheline1 :x1=ay=z+1becos11
3.Ifthe
distanceofthepoint(6, 6,4)fromtheplanePis36,thena4+b2is
equalto
[8-Apr-2023shift2]
Options:
A.85
B.48
C.25
D.32
Answer:D
( )
2x +3y 6z +7=05
2,1,λ, (−2,0,1)
d1=5+3 +7
7=d2=46+7
7
| 15 |=|3|
15 =3 or 15 = 3
=12 =18
λ=2 λ =3
λ1=3,λ2=2
P(1,2,3)x5
1=y1
2=z+7
2
( )
| | | |
d=(4, 1, 10) × (1,2,2)
3=18^
i18^
j+9^
k
3=9
| | | |
Solution:
-------------------------------------------------------------------------------------------------
Question70
LetP1betheplane3x y7z =11andP2betheplanepassingthrough
thepoints(2, 1,0), (2,0, 1),and(5,1,1).Ifthefootofthe
perpendiculardrawnfromthepoint(7,4, 1)onthelineofintersection
oftheplanesP1andP2is(α,β,γ),thenα +β+γisequalto_______.
[8-Apr-2023shift2]
Answer:11
Solution:
Solution:
θ=cos11
3sin θ =11
9=22
3
sin θ =a1+1(−1) + (−1) 1
a2+1+1 3
=22
3
{3(a2)}2=24(a2+2)
3(a24a +4) = 8a2+16
5a2+12a +4=0
5a2+10a +2a +4=0
a= 2,2
5az
a= 2
Distanceof(6, 6,4)from
2x +yzb=0is36
12 64b
4+1+1=36
| b+22 | = 18 b= 40, 4
| ab| 10
b= 4
a4+b2
=32 Ans.
| |
P2isgivenby
x5 y 1 z 1
3 2 1
3 1 2
=0
xyz=3
DRoflineintersectionofP1&P2
i j k
111
317
+6^
i+4^
j+2^
k
Let
z=0,xy=3
3x y=112x =8
| |
| |
-------------------------------------------------------------------------------------------------
Question71
LetPbetheplanepassingthroughtheline x1
1=y2
3=z+5
7andthe
point(2,4, 3).Iftheimageofthepoint(−1,3,4)intheplanePis
(α,β,γ)thenα +β+γisequalto
[8-Apr-2023shift2]
Options:
A.12
B.9
C.10
D.11
Answer:C
Solution:
Solution:
x=4
y=1
SoLineis
x4
6=y1
4=z0
2=r
(α,β,γ) = (6r +4,4r +1,2r)
6(α7) + 4(β4) + 2(γ+1) = 0
42 + 16 + +2=0
36r +24 +16r +4+4r 56 =0
56r =28
r=1
2α+β+γ=12r +5
=6+5=11
Equationofplaneisgivenby
x1 y 2 z +5
1 2 2
137
=0
4x yz=7
α+1
4=β3
1=γ4
1=2(−4347)
16 +1+1=2
α=7,β=1,γ=2
α+β+γ=10(Option 3)
| |
-------------------------------------------------------------------------------------------------
Question72
LetObetheoriginandthepositionvectorofthepointPbe
^
i2^
j+3^
k.IfthepositionvectorsoftheA,BandCare
2^
i+^
j3^
k,2^
i+4^
j2^
kand4^
i+2^
j^
krespectively,thenthe
projectionofthevector
OPonavectorperpendiculartothevectors
AB
and
ACis:
[10-Apr-2023shift1]
Options:
A. 10
3
B. 8
3
C. 7
3
D.3
Answer:D
Solution:
Solution:
PositionvectorofthepointP(−1, 2,3), A(−2,1, 3)B(2,4, 2),andC(−4,2, 1)
Then
OP
AB ×
AC
AB ×
AC
AB ×
AC =
^
i^
j^
k
4 3 1
21 2
=^
i(5) ^
j(8+2) + ^
k(4+6)
=5^
i10^
j+10^
k
Now
)
| |
-------------------------------------------------------------------------------------------------
Question73
LettwoverticesofatriangleABCbe(2,4,6)and(0, 2, 5),andits
centroidbe(2,1, 1).Iftheimageofthethirdvertexintheplane
x+2y +4z =11is(α,β,γ),thenαβ +βγ +γαisequalto:
[10-Apr-2023shift1]
Options:
A.76
B.74
C.70
D.72
Answer:B
Solution:
Solution:
OP
AB ×
AC
AB ×
AC
= ^
i2^
j+3^
k
^
i10^
j+10^
k
(5)2+ (−10)2+ (10)2
=5+20 +30
25 +100 +100
=45
225 =45
15 =3
)( ) ( )
GivenTwoverticesofTriangleA(2,4,6)andB(0, 2, 5)andifcentroidG(2,1, 1)
LetThirdverticesbe(x,y,z)
Now 2+0+x
3=2,42+y
3=1,65+z
3= 1
x=4,y=1,z= 1
ThirdverticesC(4,1, 4)
Now,ImageofverticesC(4,1, 4)inthegivenplaneisD(α,β,γ)
Now
α4
1=β1
2=γ+4
4= 2(4+216 11)
1+4+16
-------------------------------------------------------------------------------------------------
Question74
Theshortestdistancebetweenthelines x+2
1=y
2=z5
2and
x4
1=y1
2=z+3
0is:
[10-Apr-2023shift1]
Options:
A.8
B.7
C.6
D.9
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question75
LetPbethepointofintersectionoftheline x+3
3=y+2
1=1z
2andthe
planex +y+z=2.IfthedistanceofthepointPfromtheplane
3x 4y +12z =32isq,thenqand2qaretherootsoftheequation:
[10-Apr-2023shift1]
Options:
A.x2+18x 72 =0
B.x2+18x +72 =0
C.x218x 72 =0
α4
1=β1
2=γ+4
4=42
21 2
α=6,β=5,γ=4
Then αβ +βγ +γα
= (6×5) + (5×4) + (4×6)
=30 +20 +24
=74
x+2
1=y
2=z5
2and x4
1=y1
2=z+3
0
=|−54|
4^
i+2^
j+4k
=54
16 +4+16
=54
6
=9
| |
D.x218x +72 =0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question76
LettimeimageofthepointP(1,2,6)intheplanepassingthroughthe
pointsA(1,2,0), B(1,4,1)andC(0,5,1)beQ(α,β,γ).Then
(α2+β2+γ2)isequalto
[10-Apr-2023shift2]
Options:
A.70
B.76
C.62
D.65
Answer:D
Solution:
x+3
3=y+2
1=1z
2=λ
x= 3,y=λ2,z=1
P( 3,λ2,1)willsatisfytheequationofplanex+y+z=2.
3+λ2+1 =2
4=2
λ=3
P(6,1, 5)
PerpendiculardistanceofPfromplane3x 4y +12z 32 =0is
q=3(6) 4(1) + 12(−5) 32
9+16 +144
q=6
2q =12
Sumofroots = 6+12 =18
Productofroots = 6(12) = 72
∴Quadraticequationhavingqand2qasrootsisx218x +72.
| |
EquationofplaneA(x1) + B(y2) + C(z0) = 0
Put(1,4,1) 2B +C=0
Put(0,5,1) A+3B +C=0
Sub:BA=0A=B,C= 2B
1(x1) + 1(y2) 2(z0) = 0
x+y2z 3=0
Imageis (α,β,γ)pt (1,2,6)
α1
1=β2
1=γ6
2=2(1+212 3)
6
α1
1=β2
1=γ6
2=4
α=5,β=6,γ= 2α2+β2+γ2
=25 +36 +4=65
Question77
Lettheline x
1=6y
2=z+8
5intersectthelines x5
4=y7
3=z+2
1and
x+3
6=3y
3=z6
1atthepointsAandBrespectively.Thenthedistanceof
themid-pointofthelinesegmentABfromtheplane2x 2y +z=14is
[10-Apr-2023shift2]
Options:
A.3
B. 10
3
C.4
D. 11
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question78
LetthefootofperpendicularfromthepointA(4,3,1)ontheplane
P:xy+2z +3=0beN.IfB(5,α,β),α,βZisapointonplaneP
suchthattheareaofthetriangleABN is32,thenα2+β2+αβisequal
to_______.
[10-Apr-2023shift2]
x
1=y6
2=z+8
5=λ...(1)
x5
4=y7
3=z+2
1=µ...(2)
x+3
6=y3
3=z6
1=γ...(3)
Intersectionof (1)&(2)“A”
(λ, +6, 8)&( +5, +7,µ2)
λ=1,µ= 1
A(1,4, 3)
Intersection(1)&(3)B "
(λ, +6, 8)&( 3, +3,γ+6)
λ=3
γ=1
B(3,0,7)
ModpointofA&B (2,2,2)
Perpendiculardistancefromtheplane
2x 2y +z=14
2(2) 2(2) + 214
4+4+1 = 4
Answer:7
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question79
Let(α,β,γ)betheimageofthepointP(2,3,5)intheplane
2x +y3z =6.Thenα +β+γisequalto:
[11-Apr-2023shift1]
Options:
A.5
B.9
C.10
D.12
Answer:C
Solution:
AN = 6
5α+ +3=0
α=8+
Nisgivenby
x4
1=y3
1=z1
2=(43+2+3)
1+1+4
x=3,y=4,z= 1
N
(3,4, 1)
BN =4+ (α4)2+ (β+1)2
=4+ ( +4)2+ (β+1)2
Areaof ABN =1
2AN ×BN =32
1
2× 6×BN =32
BN =23
4+ ( +4)2+ (β+1)2=12
( +4)2+ (β+1)28=0
2+18β +9=0
( +3)(β+3) = 0
β= 3
α=2
α2+β2+αβ =9+46=7
-------------------------------------------------------------------------------------------------
Question80
Iftheequationoftheplanethatcontainsthepoint(−2,3,5)andis
perpendiculartoeachoftheplanes2x +4y +5z =8and3x 2y +3z =5
isαx +βy +γz +97 =0thenα +β+γ=:
[11-Apr-2023shift1]
Options:
A.15
B.18
C.17
D.16
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
α2
2=β3
1=γ5
3= 22×2+33×56
22+12+132=2
α2
2=2 β 3=2 γ 5= 6
α=6 β =5 γ = 1
α+β+γ=10
( )
Theequationofplanethrough(−2,3,5)is
a(x+2) + b(y3) + c(z5) = 0
itisperpendicularto2x +4y +5z =8&3x 2y +3z =5
2a +4b +5c =0
3a 2b +3c =0
a
4 5
23
=b
2 5
3 3
=c
2 4
32
a
22 =b
9=c
16
∴Equationofplaneis
22(x+2) + 9(y3) 16(z5) = 0
22x +9y 16z +97 =0
Comparingwith αx +βy +γx +97 =0
Weget α +β+γ=22 +916 =15
| | | | | |
Question81
Letalinel passthroughtheoriginandbeperpendiculartothelines
11:
r=^
i11^
j7^
k+λ^
i+2^
j+3^
k,λ and
12:
r= ^
i+^
k+µ2^
i+2^
j+^
k,µ .
IfPisthepointofintersectionofl andl 1,andQ(α,β,γ)isthefootof
perpendicularfromPonl 2,then9(α+β+γ)isequalto______.
[11-Apr-2023shift1]
Answer:5
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question82
LetPbetheplanepassingthroughthepoints(5,3,0), (13,3, 2)and
(1,6,2).Forα N,ifthedistancesofthepointsA(3,4,α)and
B(2,α,a)fromtheplanePare2and3respectively,thenthepositive
valueofais
[11-Apr-2023shift2]
Options:
A.5
Let = 0^
i+0^
j+0^
k+γ a^
i+b^
j+c^
k
=γ a^
i+b^
j+c^
k
a^
i+b^
j+c^
k=
^
i^
j^
k
123
221
=^
i(26) ^
j(16) + ^
k(24)
= 4^
i5^
j2^
k
= γ4^
i+5^
j2^
k
Pisintersectionofℓandℓ1
=1+λ, = 11 +, = 7+
Bysolvingtheseequationγ= 1,P(4, 5,2)
LetQ(−1+,,1+µ)
PQ 2^
i+2^
j+^
k=0
2+ + +1+µ=0
=1
µ=1
9
Q7
9,2
9,10
9
9(α+β+γ) = 97
9+2
9+10
9
=5
( ) ( )
( )
| |
( )
( )
( )
( )
B.6
C.4
D.3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question83
LetthelinepassingthroughthepointP(2, 1,2)andQ(5,3,4)meet
theplanex y+z=4atthepointT .ThenthedistanceofthepointR
fromtheplanex +2y +3z +2=0measuredparalleltotheline
x7
2=y+3
2=z2
1isequalto
[11-Apr-2023shift2]
Options:
A.3
B.61
C.31
D.189
Answer:A
Solution:
Solution:
^
i^
j^
k
8 0 2
432
=^
i(−6) + 8^
j24^
k
Normaloftheplane = 3^
i4^
j+12^
k
Plane:3x 4y +12z =3
DistancefromA(3,4,α)
916 +12α 3
13 =2
α=3
α= 8 (rejected)
DistancefromB(2,3,a)
612 +12a 3
13 =3
a=4
| |
| |
| |
Line: x5
3=y3
4=z4
2=λ
R( +5, +3, +4)
+5 3+ +4=4
λ+6=4λ= 2
R (−1, 5,0)
-------------------------------------------------------------------------------------------------
Question84
Lettheline : x=1y
2=z3
λ,λRmeettheplaneP :x+2y +3z =4at
thepoint(α,β,γ).IftheanglebetweenthelineandtheplanePis
cos15
14 ,thenα + +6γisequalto_______.
[11-Apr-2023shift2]
Answer:11
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question85
Letthelines11:x+5
3=y+4
1=zα
2and
l2:3x +2y +z2=0=x3y +2z 13becoplanar.Ifthepoint
P(a,b,c)onl 1isnearesttothepointQ(−4, 3,2),then|a|+ | b|+|c|
isequalto
[12-Apr-2023shift1]
Options:
A.10
()
Line: x+1
2=y+5
2=z0
1=µ
PointT= ( 1, 5,µ)
Itliesonplane
1+2( 5) + +2=0
µ=1
T= (1, 3,1)
RT =3
: x=y1
2=z3
λ,λ
Dr'soflineℓ(1,2,λ)
Dr'sofnormalvectorofplaneP:x+2y +3z =4are(1,2,3)
Now,anglebetweenlineℓandplanePisgivenby
sin θ =1+4+
5+λ2 14 =3
14 given cos θ =5
14
λ=2
3
Letvariablepointonlineℓis t,2t +1,2
3t+3
lineofplaneP.
t= 1
1, 1,7
3 (α,β,γ)
α+ + =11
||()
( )
( )
B.8
C.12
D.14
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question86
LettheplaneP:4x y+z=10berotatedbyanangle π
2aboutitslineof
intersectionwiththeplanex +yz =4.Ifαisthedistanceofthepoint
(2,3, 4)fromthenewpositionoftheplaneP,then35αisequalto
[12-Apr-2023shift1]
Options:
A.90
B.105
C.85
D.126
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
(3x +2y +z2) + µ(x3y +2z 13) = 0
3(3+µ) + 1 (2) 2(1+) = 0
9 =0
µ=9
4
4(−15 8+α2) + 9(−5+12 + 13) = 0
100 + 54 +18α =0
α=7
Let P ( 5,λ4, +7)
DirectionratioofPQ( 1,λ1, +5)
ButPQ 1
3( 1) + 1 (λ1) 2(− +5) = 0
λ=1
P(−2, 3,5) | a|+|b|+|c| = 10
Letequationinnewpositionis
(4x y+z10) + λ(x+yz4) = 0
4(4+λ) 1 (−1+λ) + 1 (1λ) = 0
λ= 9
Soequationinnewpositionis
5x 10y +10z +26 =0
α=54
15
Question87
Lettheequationofplanepassingthroughthelineofintersectionofthe
planesx +2y +az =2andx y+z=3be5x11y +bz =6a 1.For
cZ ,ifthedistanceofthisplanefromthepoint(a, c,c)is 2
a,then
a+b
cisequalto
[13-Apr-2023shift1]
Options:
A.-4
B.2
C.-2
D.4
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question88
Thedistanceofthepoint(−1,2,3)fromtheplane
r^
i2^
j+3^
k=10
paralleltothelineoftheshortestdistancebetweenthelines
r=^
i^
j+λ 2^
i+^
kand
r=2^
i^
j+µ^
i^
j+^
kis
[13-Apr-2023shift1]
Options:
A.25
B.35
C.36
D.26
Answer:D
Solution:
( )
( ) ( ) ( ) ( )
(x+2y +az 2) + λ(xy+z3) = 0
1+λ
5=2λ
11 =a+λ
b=2+
6a 1
λ= 7
2,a=3,b=1
2
a=5a +11c +bc 6a +1
25 +121 +1
c= 1
a+b
c=3+1
1= 4
| |
Solution:
-------------------------------------------------------------------------------------------------
Question89
Lettheimageofthepoint 5
3,5
3,8
3intheplanex 2y +z2=0beP.
IfthedistanceofthepointQ(6, 2,α ), α>0,fromPis13,thenαis
equalto________.
[13-Apr-2023shift1]
Answer:15
Solution:
-------------------------------------------------------------------------------------------------
Question90
( )
LetL1:
r=^
i^
j+λ 2^
i+^
k
L2:
r=2^
i^
j+µ^
i^
j+^
k
n=
^
i^
j^
k
201
11 1
n=^
i^
j2^
k
EquationoflinealongshortestdistanceofL1andL2
x+1
1=y2
1=z3
2=r
(x,y,z) (r1,2r,32r)
(r1) 2(2r) + 3(32r) = 10
r= 2
Q(x,y,z) (−3,4,7)
PQ = 4+4+16 =26
( ) ( )
( ) ( )
| |
Imageofpoint 5
3,5
3,8
3
x5
3
1=
y5
3
2=
z8
3
1=
2 1 ×5
3+ (−2) × 8
3+1×8
32
12+22+12
=1
3
x=2,y=1,z=3
132= (62)2+ (−21)2+ (α3)2
(α3)2=144 α=15(∵α>0)
( )
( )
Theplane,passingthroughthepoints(0, 1,2)and(−1,2,1)and
paralleltothelinepassingthrough(5,1, 7)and(1, 1, 1),also
passesthroughthepoint
[13-Apr-2023shift2]
Options:
A.(0,5, 2)
B.(−2,5,0)
C.(2,0,1)
D.(1, 2,1)
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question91
Theline,thatiscoplanartotheline x+3
3=y1
1=z5
5,is
[13-Apr-2023shift2]
Options:
A. x+1
1=y2
2=z5
5
B. x+1
1=y2
2=z5
5
C. x1
1=y2
2=z5
4
D. x+1
1=y2
2=z5
4
Answer:A
Solution:
Planepassingthrough(0, 1,0)and(−1,2,1)
Thenvectorinplane⟨−1,3, 1⟩vectorparalleltoplaneis⟨4,2, 6
Normalvectortoplane
n=
^
i^
j^
k
131
4 2 6
=^
i(16) ^
j(10) + ^
k(−14)
n= 8,5,7
Equationofplane
8(x0) + 5(y+1) + 7(z2) = 0
8x +5y +7z =9
Fromgivenoptionspoint(−2,5,0)liesonplane.
( ) | |
-------------------------------------------------------------------------------------------------
Question92
LetNbethefootofperpendicularfromthepointP(1, 2,3)ontheline
passingthroughthepoints(4,5,8)and(1, 7.5).Thenthedistanceof
Nfromtheplane2x 2y +z+5=0is
[13-Apr-2023shift2]
Options:
A.6
B.7
C.9
D.8
Answer:B
Solution:
Conditionofco-planarity
x2x1a1a2
y2y1b1b2
z2z1c1c2
=0
Wherea1,b1,c1aredirectioncosineof1st lineanda2,b2,c2aredirectioncosineof2nd line.Now.Solvingoptions
Point(−3,1,5)&point(−1,2,5)
(1)
3 1 5
1 2 5
21 0
= 3(5) (10) + 5(−1+4)
= 15 10 +15 = 10
(2)point(−1,2,5)
3 1 5
1 2 5
21 0
=3(5) (10) + 5(1+4)
25 +5=0
(3)point(−1,2,5)
3 1 5
1 2 4
21 0
3(4) (8) + 5(1+4)
12 8+25 =5
(4)point(−1,2,5)
315
125
4 1 0
3(−5) (−20) + 5(−18)
15 +20 45 = 10
| |
| |
| |
| |
| |
-------------------------------------------------------------------------------------------------
Question93
LetthefootofperpendicularofthepointP(3, 2, 9)ontheplane
passingthroughthepoints(−1, 2, 3), (9,3,4), (9, 2,1)be
Q(α,β,γ).ThenthedistanceofQfromtheoriginis
[15-Apr-2023shift1]
Options:
A.29
B.38
C.42
D.35
Answer:C
Solution:
PN = λ, 5,λ+2
PN. < 1,4,1> = 0
λ+16λ 20 +λ+2=0
λ=1
N(2, 3,6)
DistanceofNfrom2x 2y +z+5=0is
d=2(2) 2(−3) + 6+5
22+ (−2)2+ (1)2
=21
3=7
||
| |
P(3, 2, 9)
EquationofplanethroughA,B,C.
x+1 y +2 z +3
10 5 7
10 0 4
=0
2x +3y 5z 7=0
FootofIrofP(3, 2, 9)is
x3
2=y+2
3=z+9
5= (66+45 7)
4+9+25
x3
2=y+2
3=z+9
5= 1
| |
-------------------------------------------------------------------------------------------------
Question94
LetSbethesetofallvaluesofλ,forwhichtheshortestdistance
betweenthelines xλ
0=y3
4=z+6
1and x+λ
3=y
4=z6
0is13.Then
8
λSλ isequalto
[15-Apr-2023shift1]
Options:
A.302
B.306
C.304
D.308
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question95
Ifthelinex =y=zintersectstheline
xsin A +ysin B +zsin C 18 =0=xsin 2A +ysin 2B +zsin 2C 9,where
A,B,CaretheanglesofatriangleABC,then80 sin A
2sin B
2sin C
2is
equalto________
[15-Apr-2023shift1]
| |
( )
Q(1, 5, 4) (α,β,γ)
OQ =α2+β2+γ2= 42
Shorttestdistance =
0 4 1
340
3 12
^
i^
j^
k
041
340
13 =|153 +|
4^
i+3^
j12^
k
=|153 +|
13
|153 + | = 169
153 + =169, 169
λ=16
8,322
8
8
λS
λ=306
| |
| |
| |
| |
Answer:5
Solution:
-------------------------------------------------------------------------------------------------
Question96
LettheplanePcontaintheline2x +yz3=0=5x 3y +4z +9and
beparalleltotheline x+2
2=3y
4=z7
5Thenthedistanceofthepoint
A(8, 1, 19)fromtheplanePmeasuredparalleltotheline
x
3=y5
4=2z
12 isequalto_______
[15-Apr-2023shift1]
Answer:26
Solution:
sin A +sin B +sin C =18
x
sin 2A +sin 2B +sin 2C =9
x
sin A +sin B +sin C =2(sin 2A +sin 2B +sin 2C)
4 cos A 2 cos B 2 cos C 2=2(4sin Asin Bsin C)
16sin A 2sin B 2sin C 2=1
HenceAns. =5.
Plane P1=λP2=0
(2x +yz3) + λ(5x 3y) + 4z +9) = 0
( +2)x+ (1)y+ ( 1)z+ 3=0
n
b=0 where
b(2,4,5)
2( +2) + 4(1) + 5( 1) = 0
λ= 1
6
Plane 7x +9y 10z 27 =0
EquationoflineABis
x8
3=y+1
4=z+19
12 =λ
Let B = (8, 1+, 19 +12λ)liesonplane P
7(8) + 9( 1) 10(12λ 19) = 27
λ=2
Point B = (2,7,5)
-------------------------------------------------------------------------------------------------
Question97
Iftheshortestdistancebetweenthelines x1
2=y2
3=z3
λand
x2
1=y4
4=z5
5is 1
3,thenthesumofallpossiblevalueofλis:
[24-Jun-2022-Shift-2]
Options:
A.16
B.6
C.12
D.15
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question98
LetthepointsontheplanePbeequidistantfromthepoints(−4,2,1)
and(2, 2,3).ThentheacuteanglebetweentheplanePandtheplane
2x +y+3z =1is
[24-Jun-2022-Shift-2]
Options:
A. π
6
AB =62+82+242=26
B. π
4
C. π
3
D.
12
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question99
LetQbethemirrorimageofthepointP(1,0,1)withrespecttothe
planeS :x+y+z=5.IfalineLpassingthrough(1, 1, 1),parallelto
thelinePQmeetstheplaneSatR,thenQR2isequalto:
[25-Jun-2022-Shift-1]
Options:
A.2
B.5
C.7
D.11
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question100
Letthelines
L1:
r=λ
i+2
j+3 widehat k ,λR
L2:
r=
i+3
j+widehat k +µ
i+
j+5 widehat k ;µR
intersectatthepointS.Ifaplaneax +by z+d=0passesthroughS
andisparalleltoboththelinesL1andL2,thenthevalueofa +b+d is
equalto
[25-Jun-2022-Shift-1]
Answer:5
Solution:
-------------------------------------------------------------------------------------------------
Question101
( )
( ) ( )
Letpbetheplanepassingthroughtheintersectionoftheplanes
r
i+3
j
k=5and
r2
i
j+
k=3,andthepoint(2,1, 2).Letthe
positionvectorsofthepointsX andY be
i2
j+4
kand5
i
j+2
k
respectively.Thenthepoints
[25-Jun-2022-Shift-2]
Options:
A.X andX +Y areonthesamesideofP
B.Y andY X areontheoppositesidesofP
C.X andY areontheoppositesidesofP
D.X +Y andX Y areonthesamesideofP
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question102
LetI1bethelineinxy-planewithxandyintercepts 1
8and 1
42
respectively,andI2bethelineinzx-planewithxandzintercepts1
8
and1
63respectively.Ifd istheshortestdistancebetweenthelineI1
andI2,thend2isequalto____
[25-Jun-2022-Shift-2]
Answer:51
Solution:
Solution:
( ) ( )
Lettheequationofrequiredplane
π: (x+3y z5) + λ(2x y+z3) = 0
(2,1, 2)liesonitso,2+λ(−2) = 0
λ=1
Hence,π:3x +2y 8=0
πx= 9,πy=5,πx+y=4
πxy= 22andπyx=6
ClearlyXandYareonoppositesidesofplaneπ
x1
8
1
8
=y
1
42
=z
0L1
-------------------------------------------------------------------------------------------------
Question103
Ifthetwolinesl 1:x2
3=y+1
2,z=2andl 2:x1
1=2y +3
α=z+5
2are
perpendicular,thenananglebetweenthelinesI2and
l3:1x
3=2y 1
4=z
4is:
[26-Jun-2022-Shift-1]
Options:
A.cos129
4
B.sec129
4
C.cos12
29
D.cos12
29
Answer:B
Solution:
( )
( )
( )
( )
or
x1
8
1=y
2=z
0......(i)
EquationofL2
x+1
8
63=y
0=z
8......(ii)
d=
c
a
(b×
d
b×
d
=
1
4
i42
i+4
j+3 6
k
(42)2+42+ (36)2
=2
32 +16 +54 =1
51
d2=51
|( ) )
| | |
( ) ()
Question104
Lettheplane2x +3y +z+20 =0berotatedthrougharightangleabout
itslineofintersectionwiththeplanex 3y +5z =8.Ifthemirrorimage
ofthepoint 2, 1
2,2 intherotatedplaneisB(a,b,c),then:
[26-Jun-2022-Shift-1]
Options:
A. a
8=b
5=c
4
B. a
4=b
5=c
2
C. a
8=b
5=c
4
D. a
4=b
5=c
2
Answer:A
Solution:
( )
Question105
Iftheplane2x +y5z =0isrotatedaboutitslineofintersectionwith
theplane3x y+4z 7=0byanangleof π
2,thentheplaneafterthe
rotationpassesthroughthepoint:
[26-Jun-2022-Shift-2]
Options:
A.(2, 2,0)
B.(−2,2,0)
C.(1,0,2)
D.(−1,0, 2)
Answer:C
Solution:
Question106
Ifthelines
r=
i
j+
k+λ 3
j
kand
r=α
i
j+µ 2
i3
kareco-
planar,thenthedistanceoftheplanecontainingthesetwolinesfrom
thepoint(α,0,0)is:
[26-Jun-2022-Shift-2]
Options:
A. 2
9
B. 2
11
C. 4
11
D.2
Answer:B
Solution:
Solution:
( ) ( ) ( ) ( )
Question107
Iftwostraightlineswhosedirectioncosinesaregivenbytherelations
l+mn=0,3l 2+m2+cnl =0areparallel,thenthepositivevalueofc
is:
[27-Jun-2022-Shift-1]
Options:
A.6
B.4
C.3
D.2
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question108
Letthemirrorimageofthepoint(a,b,c)withrespecttotheplane
3x 4y +12z +19 =0be(a6,β,γ).Ifa +b+c=5,then7β9γis
equalto
[27-Jun-2022-Shift-1]
Answer:137
Solution:
l+mn=0n=l+m
3l 2+m2+cnl =0
3l 2+m2+cl (l+m) = 0
= (3+c)l2+cl m +m2=0
= (3+c)l
m
2+cl
m+1=0
∴Linesareparallel
D=0
c24(3+c) = 0
c24c 12 =0
(c4)(c+3) = 0
c=4(asc>0)
( ) ( )
-------------------------------------------------------------------------------------------------
Question109
Letthefootoftheperpendicularfromthepoint(1,2,4)ontheline
x+2
4=y1
2=z+1
3beP.ThenthedistanceofPfromtheplane
3x +4y +12z +23 =0is
[27-Jun-2022-Shift-2]
Options:
A.5
B. 50
13
C.4
D. 63
13
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
xa
3=yb
4=zc
12 =2(3a 4b +12c +19)
32+ (−4)2+122
xa
3=yb
4=zc
12 =6a +8b 24c 38
169
(x,y,z) (a6,β,γ)
(a6) a
3=βb
4=γc
12 =6a +8b 24c 38
169
βb
4= 2β=8+b
γc
12 = 2γ= 24 +c
6a +8b 24c 38
169 = 2
3a 4b +12c =150
a+b+c=5
3a +3b +3c =15
Applying(1)-(2)
7b +9c =135
7b 9c = 135
=7(8+b) 9(−24 +c)
=56 +216 +7b 9c
=56 +216 135 =137
L:x+2
4=y1
2=z+1
3=t
LetP= (4t 2,2t +1,3t 1)
Pisthefootofperpendicularof(1,2,4)
4(4t 3) + 2(2t 1) + 3(3t 5) = 0
29t =29 t=1
P= (2,3,2)
Now,distanceofPfromtheplane
3x +4y +12z +23 =0,is
6+12 +24 +23
9+16 +144 =65
13 =5
||
Question110
Theshortestdistancebetweenthelines x3
2=y2
3=z1
1and
x+3
2=y6
1=z5
3,is
[27-Jun-2022-Shift-2]
Options:
A. 18
5
B. 22
35
C. 46
35
D.63
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question111
IftwodistinctpointQ,Rlieonthelineofintersectionoftheplanes
x+2y z=0and3x 5y +2z =0andPQ =PR = 18wherethepoint
Pis(1, 2,3),thentheareaofthetrianglePQRisequalto
[28-Jun-2022-Shift-1]
Options:
A. 2
338
B. 4
338
C. 8
338
D. 152
3
L1:x3
2=y2
3=z1
1
L2:x+3
2=y6
1=z5
3
Now,
p×
q=begin array ccc
i
j
k
2 3 1
2 1 3 end array =10
i8
j4
k
and
a2
a1=6
i4
j4
k
S.D. = 60 +32 +16
100 +64 +16 =108
180 =18
5
|
|
||
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question112
TheacuteanglebetweentheplanesP1andP2,whenP1andP2arethe
planespassingthroughtheintersectionoftheplanes
5x +8y +13z 29 =0and8x 7y +z20 =0andthepoints(2,1,3)
and(0,1,2),respectively,is
[28-Jun-2022-Shift-1]
Options:
A. π
3
B. π
4
C. π
6
D. π
12
Answer:A
Solution:
LineLisx=y=z
PQ
i+
j+
k=0
(α3) + α+2+α1=0
α=2
3so, T =2
3,2
3,2
3
PT =38
3
QT =4
3
So,Area =1
2×4
3×38
32
=438
3sq.units
( )
( )
( )
FamilyofPlane'sequationcanbegivenby
(5+)x+ (8)y+ (13 +λ)z (29 +20λ) = 0
P1passesthrough (2,1,3)
-------------------------------------------------------------------------------------------------
Question113
LettheplaneP :
r
a=d containthelineofintersectionoftwoplanes
r
i+3
j
k=6and
r 6
i+5
j
k=7IftheplanePpassesthrough
thepoint 2,3,1
2,thenthevalueof 13
a2
d2isequalto
[28-Jun-2022-Shift-1]
Options:
A.90
B.93
C.95
D.97
Answer:B
Solution:
( ) ( )
( ) | |
(10 +16λ) + (8) + (39 +) (29 +20λ) = 0
⇒− +28 =0λ=7
2
d.r,sofnormalto P1
33,33
2,33
2or 1, 1
2,1
2
P2passesthrough (0,1,2)
8 +26 + (29 +20λ) = 0
525λ =0
λ=1
5
d.r,sofnormalto P2
33
5,33
5,66
5or 1,1,2
Anglebetweennormals
=
i1
2
j+1
2
k
i+
j+2
k
3
2
cos θ =
11
2+1
3=1
2
θ=π
3
( ) ( )
P1:x+3y z=6
P2: 6x +5y z=7
FamilyofplanespassingthroughlineofintersectionofP1andP2isgivenby
x(1) + y(3+) + z(−1λ) (6+) = 0
Itpassesthrough 2,3,1
2
So, 2(1) + 3(3+) + 1
2(−1λ) (6+) = 0
212λ +9+15λ 1
2λ
26 =0
9
2
2=0λ=1
( )
-------------------------------------------------------------------------------------------------
Question114
Lettheplaneax +by +cz =d passthrough(2,3, 5)andis
perpendiculartotheplanes
2x +y5z =10and3x +5y 7z =12.Ifa,b,c,d areintegersd >0
andgcd (|a|, | b|,|c| ,d) = 1,thenthevalueofa +7b +c+20d is
equalto:
[28-Jun-2022-Shift-2]
Options:
A.18
B.20
C.24
D.22
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question115
LettheimageofthepointP(1,2,3)inthelineL :x6
3=y1
2=z2
3beQ.
LetR(α,β,γ)beapointthatdividesinternallythelinesegmentPQin
theratio1 :3.Thenthevalueof22(α+β+γ)isequalto___
[28-Jun-2022-Shift-2]
Options:
Requiredplaneis
5x +8y 2z 13 =0
Or
r 5
i+8
j2
k=13
13
a2
|d|2=132
(13)2
a|2=93
( )
| | |
Equationofpanethroughpoint(2,3, 5)andperpendiculartoplanes2x +y5z =10and3x +5y−7z =12is
x2 y 3 z +5
2 1 5
3 5 7
=0
∴Equationofplaneis(x2)(−7+25) (y3)
(−14 +15) + (z+5) 7=0
18x y+7z +2=0
18x y+7z = 2
18x +y7z =2
Oncomparingwithax +by +cz =dwhered>0isa= 18,b=1,c= 7,d=2
a+7b +c+20d =22
| |
Answer:125
Solution:
-------------------------------------------------------------------------------------------------
Question116
Ifthemirrorimageofthepoint(2,4,7)intheplane3x y+4z =2is
(a,b,c),then2a +b+2cisequalto:
[29-Jun-2022-Shift-1]
Options:
A.54
B.50
C.6
D.42
Answer:C
Solution:
Solution:
ThepointdividingPQintheratio1:3willbemid-pointofP&footofperpendicularfromPontheline.
∴Letapointonlinebeλ
x6
3=y1
2=z2
3=λ
P( +6, +1, +2)
asPisfootofperpendicular
( +5)3+ ( 1)2+ ( 1)3=0
22λ +15 23=0
λ=5
11
P51
11,1
11,7
11
Mid-pointof PP
51
11 +1
2,
1
11 +2
2,
7
11 +3
2
62
22,23
22,40
22 (α,β,γ)
22(α,β,γ) = 62 +23 +40 =125
( )
( )
( )
Weknowmirrorimageofpoint(x1,y1,z1)intheplaneax +by +cz =d
xx1
a=yy1
b=zz1
c=2(ax1+by1+cz1d)
a2+b2+c2
Heregivenpoint(2,4,7)andplane3x y+4z =2thenmirrorimageis
x2
3=y4
1=z7
4=2(64+28 2)
9+1+16
x2
3=y4
1=z7
4= 28
13
x= 58
13 =a
y=80
13 =b
z= 21
13 =c
2a +b+2c
-------------------------------------------------------------------------------------------------
Question117
Letd bethedistancebetweenthefootofperpendicularsofthepoints
P(1,2, 1)andQ(2, 1,3)ontheplanex+y+z=1.Thend 2isequal
to___
[29-Jun-2022-Shift-1]
Answer:26
Solution:
-------------------------------------------------------------------------------------------------
Question118
LetP1:
r2
i+
j3
k=4beaplane.LetP2beanotherplanewhich
passesthroughthepoints(2, 3,2), (2, 2, 3)and(1, 4,2).Ifthe
directionratiosofthelineofintersectionofP1andP2be16,α,β,then
thevalueofα +βisequalto____
[29-Jun-2022-Shift-1]
Answer:28
Solution:
( )
=258
13 +80
13 +221
13
=116 +80 42
13 =78
13 = 6
( ) ( )
FootofperpendicularfromP
x1
1=y2
1=z+1
1=−(1+211)
3
p2
3,7
3,2
3
andfootofperpendicularfromQ
x2
1=y+1
1=z3
1=−(21+31)
3
Q5
3,2
3,10
3
PQ=(1)2+ (3)2+ (4)2=d= 26
d2=26
( )
( )
DirectionratioofnormaltoP1≡<2,1, 3>
-------------------------------------------------------------------------------------------------
Question119
Let x2
3=y+1
2=z+3
1lieontheplanepx qy +z=5,forsomep,qR.
Theshortestdistanceoftheplanefromtheoriginis:
[29-Jun-2022-Shift-2]
Options:
A. 3
109
B. 5
142
C. 5
71
D. 1
142
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question120
LetQbethemirrorimageofthepointP(1,2,1)withrespecttothe
planex +2y +2z =16.LetT beaplanepassingthroughthepointQand
containstheline
r=
k+λ
i+
j+2
k,λR.Then,whichofthe
followingpointsliesonT?
[29-Jun-2022-Shift-2]
( )
andthatofP2
i
j
k
0 1 5
12 5
= 5
i
j(−5) +
k(1)
i.e.⟨ 5,5,1>
d.r'soflineofintersectionarealongvector
i
j
k
2 1 3
5 5 1
=
i(16)
j(−13) +
k(15)
i.e.<16,13,15>
α+β=13 +15 =28
| |
| |
(2, 1, 3)satisfythegivenplane.
So2p +q=8
Alsogivenlineisperpendiculartonormalplaneso3p +2q 1=0
p=15,q= 22
Eq.ofplane15x 22y +z5=0
itsdistancefromorigin = 6
710 =5
142
Options:
A.(2,1,0)
B.(1,2,1)
C.(1,2,2)
D.(1,3,2)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question121
Letalinehavingdirectionratios1, 4,2intersectthelines
x7
3=y1
1=z+2
1and x
2=y7
3=z
1atthepointsAandB.Then(AB)2is
equalto__
[24-Jun-2022-Shift-1]
Answer:84
Solution:
-------------------------------------------------------------------------------------------------
ImageofP(1,2,1)inx+2y +2z 16 =0
isgivenbyQ(4,8,7)
Eq.ofplaneT=
x y z+1
4 8 6
1 1 2
=0
2x z=1soB(1,2,1)liesonit.
| |
Question122
Letαbetheanglebetweenthelineswhosedirectioncosinessatisfythe
equationsI +mn=0andI 2+m2n2=0.Then,thevalueof
sin4α+cos4αis
[25Feb2021Shift1]
Options:
A. 3
4
B. 3
8
C. 5
8
D. 1
2
Answer:C
Solution:
:
Given,l+mn=0...(i)
andI2+m2n2=0...(ii)
OnsquaringEq.(i),weget
(l+m)2=n2
l2+m2+2l m =n2...(iii)
FromEqs.(ii)and(iii),
I2+m2n2=0
I2+m2+2l m =n2
n22l m = n2
2l m =0I m =0
I=0 or m =0
CaseIWhenI=0
0+mn=0
m=n
and I 2+m2+n2=1
m2+m2=1[ n=mandl=0]
m2=1
2
m= ± 1
2=n
(I,m,n) = 0,1
2,1
2or 0,1
2,1
2
CaseIIWhenm=0
then,l+mn=0
I=nandl2+m2+n2=1
[ n=Iandm=0]
I2+0+I2=1
I= ± 1
2[ n=landm=0]
⇒∴ (I,m,n) = 1
2,0,1
2or 1
2,0,1
2
a=0,1
2,1
2andb=1
2,0,1
2
Thencos α =ab
|a||b|=1
2
sin α = ± 3
2
( ) ( )
( ) ( )
( ) ( )
-------------------------------------------------------------------------------------------------
Question123
Aline'l 'passingthroughoriginisperpendiculartothelines
l1:r= (3+t)
i+ (−1+2t)
j+ (4+2t)
k
l2:r(3+2s)
i+ (3+2s)
j+ (2+s)
k
Ifthecoordinatesofthepointinthefirstoctanton'I 2'atadistanceof
17fromthepointofintersectionof'l 'and'l 1'are(a,b,c),then
18(a+b+c)isequalto............
[25Feb2021Shift2]
Answer:44
Solution:
-------------------------------------------------------------------------------------------------
Question124
Theequationofthelinethroughthepoint(0,1,2)andperpendicularto
Now,cos4α+sin4α=1
16 +9
16 =10
16 =5
8
LetL1x3
1=y3
2=z4
2=u(say)
⇒Directionratiosof L1=1,2,2
L2x3
2=y3
2=z2
1=v (say)
DirectionratiosofL2=2,2,1
LineLpassingthroughoriginisperpendiculartoL1andL2.
Hence,directionratiosofLisparallelto(L1×L2).
(−2,3, 2)
EquationofLx
2=y
3=z
2=λ(say)
SolveLandL1,weget
(, ,) = (µ+3, 1, +4)
Gives,λ=1,µ= 1
So,intersectionpointP(2, 3,2).
LetQ(2v +3,2v +3,v+2)berequiredpointonL2.
Now,PQ = 17(given)
Now, PQ = 17 (given)
PQ =(2v +1)2+ (2v +6)2+ (v)2
= 17
(2v +1)2+ (2v +6)2+v2=17 (squaringonbothsides)
9v2+28v +20 =0
Onsolving,wegetv= 2(rejected), 10
9(accepted)
Qis 7
9,7
9,8
9
18(a+b+c) = 18 7
9+7
9+8
9=44
( )
( )
theline x1
2=y+1
3=z1
2is
[25Feb2021Shift1]
Options:
A. x
3=y1
4=z2
3
B. x
3=y1
4=z2
3
C. x
3=y1
4=z2
3
D. x
3=y1
4=z2
3
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question125
Letλbeaninteger.Iftheshortestdistancebetweenthelines
xλ=2y 1= 2zandx =y+ =zλis 7
22,thenthevalueof|λ|is
..........
[24Feb2021Shift2]
Answer:1
Solution:
Given,line⇒ x1
2=y+1
3=z1
2=λ(let)
AnypointonthislineisB( +1, 1, +1)anddirectionratiosofthisline = (2,3, 2) = d1
LetgivenpointbeA(0,1,2).
Thendirectionratioof
AB = ( +1, 2, 1) = d2
∵Bothlinesareperpendiculartoeachother.
d1d2=0
2( +1) + 3( 2) 2(− 1) = 0
+2+ 6+ +2=0
17λ =2
λ λ =217
Directionratioofrequiredline d 2= (21, 28, 21)
= (3, 4, 3) = (−3,4,3)
ThislinepassesthroughA(0,1,2).
∴Requiredequationofline⇒ x0
3=y1
4=z2
3
Given,equationofline⇒xλ=2y 1=
-------------------------------------------------------------------------------------------------
Question126
Leta,bR.IfthemirrorimageofthepointP(a,6,9)withrespectto
theline x3
7=y2
5=z1
9is(20,b, a9),then|a+b|isequalto
[24Feb2021Shift2]
Options:
A.88
B.86
C.84
D.90
Answer:A
Solution:
Solution:
xλ
1=y12
1
2
=z
1
2
or xλ
2=y12
1=z
1
Pointonthislinethroughwhichitpassesis λ,1
2,0.
Equationofanotherline⇒x=y+ =zλ
x
1=y (−)
1=zλ
1...(ii)
Apointthroughwhichthislinepassesis(0, ,λ).
Now,distancebetweentwoskewlines
=|(a2a1) (b1×b2)|
|b1×b2|
Accordingtothequestion,
3
2
14 =7
22
| 10λ +3| = 7
10λ +3= ±7
10λ =4, 10
λ=2
5and λ = 1
λ= 1
( λ =2
5isnotpossibleas λ isaninteger)
Hence, |λ| = | 1| = 1
( )
| |
Given,P(a,6,9)
Equationofline x3
7=y2
5=z1
9
ImageofpointPwithrespecttolineispointQ(20,b, a9)
Mid-pointofPandQ=a+20
2,6+b
2,a
2
Thispointliesonline
a+20
23
7=
6+b
22
5=
a
21
9
a+14
14 =b+2
10 =a+2
18
( )
-------------------------------------------------------------------------------------------------
Question127
ConsiderthethreeplanesP1:3x +15y +21z =9,P2:x3y z=5and
P3:2x +10y +14z =5Then,whichoneofthefollowingistrue?
[26Feb2021Shift1]
Options:
A.P1andP2areparallel
B.P1andP3areparallel
C.P2andP3areparallel
D.P1,P2andP3allareparallel
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question128
Ifthemirrorimageofthepoint(1,3,5)withrespecttotheplane
4x 5y +2z =8is(α,β,γ),then5(α+β+γ)equals
[26Feb2021Shift2]
Options:
A.47
B.43
C.39
D.41
Answer:A
a+14
14 =a+2
18 and b+2
10 =a+2
18
Solving,wegeta= 56,b= 32
| a+b| = | 56 32 | = 88
Given,P13x +15y +21z =9
P2x3y z=5
P32x +10y +14z =5
ConsiderplaneP1,itcanbewrittenas
3x +15y +21z =9 or x +5y +7z =3
Again,considerplaneP3,itcanbewrittenas,
2x +10y +14z =5orx+5y +7z =52
Hence,P1andP3areparallel.
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question129
LetLbealineobtainedfromtheintersectionoftwoplanes
x+2y +z=6andy +2z =4.IfpointP(α,β,γ)isthefootof
perpendicularfrom(3,2,1)onL,thenthevalueof21(α+β+γ)equals
[26Feb2021Shift2]
Options:
A.142
B.68
C.136
D.102
Answer:D
Solution:
Given,pointP(1,3,5)hasthemirrorimageQ(α,β,γ)withrespecttoplane4x 5y +2z =8
Then,Mbethemid-pointoflinejoiningpointPandQ.andMliesongivenplane.
CoordinatesofM(a,b,c)areasfollows
a=α+1
2,b=β+3
2,c=γ+5
2
∵Mliesonplane,then
4a 5b +2c =8
4α+1
25β+3
2+2γ+5
2=8...(i)
Also,PQisperpendiculartoplane
α1
4=β3
5=γ5
2=λ (say)
α= +1,β=3,γ= +5...(ii)
UseEq.(ii)inEq.(i),weget
2( +2) 56
2+ +10 =8
+415 +25λ
2+ +10 =8λ=2
5
α= +1=42
5+1=13
5
β=352
5=5
5=1
and γ=5+22
5=29
5
5(α+β+γ) = 513
5+1+29
5=47
( ) ( ) ( )
( )
( )
( )
( )
( )
-------------------------------------------------------------------------------------------------
Question130
Let(λ,2,1)beapointontheplanewhichpassesthroughthepoint
(4, 2,2).Iftheplaneisperpendiculartothelinejoiningthepoints
(−2, 21,29)and(−1, 16,23),then λ
11
2
11 4is..........
[26Feb2021Shift1]
Answer:8
Solution:
Solution:
( )
Given,x+2y +z=6...(i)
and y+2z =4...(ii)
Puty=42zfromEq.(ii)Eq.in(i),weget
x+84z +z=6
x= 2+3z
x+2
3=z...(iii)
y=42z
y4
2=z...(iv)
FromEqs.(iii)and(iv),lineofintersectionoftwoplanesis
x+2
3=y4
2=z
1=λ
Then,DirectionratiosofPQis
x 4,z=λ
( 5, +2,λ1)
( 5, +2,λ1)
Since,PQisperpendiculartotheline,then
3( 5) 2(− +2) + 1(λ1) = 0
λ=10
7
P16
7,8
7,10
7
Then, 21(α+β+γ) = 21 16
7+8
7+10
7
=21 34
7=3×34 =102
( )
( )
( )
Given(λ,2,1)bepointontheplanewhichpassesthrough(4, 2,2)andplaneisperpendiculartolinejoiningPandQ.
Given,ABisperpendiculartoPQi.e.,AB PQ =0
(
-------------------------------------------------------------------------------------------------
Question131
AplanepassesthroughthepointsA(1,2,3), B(2,3,1)andC(2,4,2).If
0istheoriginandPis(2, 1,1),thentheprojectionofOPonthis
planeisoflength
[202125FebShift2]
Options:
A. 2
3
B. 2
11
C. 2
7
D. 2
5
Answer:B
Solution:
Solution:
Now,AB = (4λ)
i+ (−22)
j+2
k
= (4λ)
i4
j+
k
PQ = (−1+2)
i+ (−16 +21)
j+ (23 29)
k
=
i+5
j6
k
= (4λ)
i4
j+
k
PQ = (−1+2)
i+ (−16 +21)
j+ (23 29)
k
=
i+5
j6
k
Hence,AB PQ =0
(4λ)(1) + (−4)(5) + (1)(−6) = 0
4λ20 6=0
λ= 22
Then, λ
11
2
11 4=22
11
24× (−22)
11 4
=4 (−8) 4=8
(
( ) ( ) ( ) ( )
Referdiagram,thenormalvectorbenanditisperpendiculartobothABandAC
AB ×AC =n
Now,A(1,2,3), B(2,3,1)andC(2,4,2)
Then,AB = (21)
i+ (32)
j+ (13)
k
=
i+
j2
k
1)
i+ (42)
j+ (23)
k
AC = (21)
i+ ( 4
-------------------------------------------------------------------------------------------------
Question132
Thevectorequationoftheplanepassingthroughtheintersectionofthe
planesr
i+j+
k=1andr
i2
j= 2andthepoint(1,0,2)is
[24Feb2021Shift2]
Options:
A.r
i+7
j+3
k=7
3
B.r3
i+7
j+3
k=7
C.r
i+7
j+3
k=7
D.r
i7
j+3
k=7
3
Answer:C
Solution:
( ) ( )
()
( )
( )
()
=
i+2
j
k
Now,AB ×AC =
i
j
k
112
121
=
i(−1+4)
j(−1+2) +
k(21)
=3
i
j+
k
n=3
i
j+
k
LetPbeanypointonnormalvectorandObeorigin.Thenreferthediagram,projectionofOPonplanehavelengthOM .
OP =2
i
j+
kand n =3
i
j+
k
OP. n = | OP||n|cos θ
(6+1+1) = 4+1+1(√9+1+1)cos θ
8= 611 cos θ cos θ =8
66
Again, sin θ =|OM |
|OP|,gives OM =sin θOP
| OM =1cos2θ|OP|
=164
66 4+1+1(use cos θ =866
=2
66 6
| OM =2
11
| |
| | | |
|
)
|
Solution:
-------------------------------------------------------------------------------------------------
Question133
Thedistanceofthepoint(1,1,9)fromthepointofintersectionofthe
line x3
1=y4
2=z5
2andtheplanex +y+z=17is:
24Feb2021Shift1
Options:
A.219
B.192
C.38
D.38
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question134
Theequationoftheplanepassingthroughthepoint(1,2, 3)and
perpendiculartotheplanes3x +y2z =5and2x 5y z=7,is
Given,point(1,0,2)
Equationofplane=
r
i+
j+
k=1 and r
i2
j= 2
Equationofplanepassingthroughtheintersectionofgivenplanesis
r
i+
j+
k1+λ r
i2
j+2=0
∵Thisplanepassesthroughpoint(1,0,2)i.e.,
vector
i+2
k
i+2
k
i+
j+
k1+λ
i+2
k
i2
j+2=0
(31) + λ(1+2) = 0
2+λ×3=0
λ= 23
Hence,equationofrequiredplaneis
r
i+
j+
k1+2
3r
i2
j+2=0
or 3 r
i+
j+
k12 r
i2
j+2=0
or r
i+7
j+3
k=7
( ) ( )
[ ( ) ] [ ( ) ]
( )
[ ( ) ( ) ] [ ( ) ( ) ]
[ ( ) ] ( ) [ ( ) ]
[ ( ) ] [ ( ) ]
( )
Let x3
1=y4
2=z5
2=t
x=3+t,y=2t +4,z=2t +5
3+t+2t +4+2t +5=17
5t =5t=1
⇒Pointofintersectionis(4,6,7)
Distancebetween(1,1,9)and(4,6,7)is
(41)2+ (61)2+ (79)2
= 9+25 +4= 38.
24Feb2021Shift1
Options:
A.3x 10y 2z +11 0
B.6x 5y 2z 2=0
C.11x +y+17z +38 =0
D.6x 5y +2z +10 =0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question135
LetthepositionvectorsoftwopointsPandQbe3
i
j+2
kand
i+2
j4
k,respectively.LetRandSbetwopointssuchthatthedirection
ratiosoflinesPRandQSare(4, 1,2)and(−2,1, 2),respectively.Let
linesPRandQSintersectatT .IfthevectorTAisperpendiculartoboth
PRandQSandthelengthofvectorTAis5units,thenthemodulusof
apositionvectorofAis
[16Mar2021Shift1]
Options:
A.482
B.171
C.5
D.227
Answer:B
Solution:
Normalvector:
i j
k
3 1 2
251
= 11
i
j17
k
So,directionratiosofnormaltotherequiredplaneare<11,1,17>
Planepassesthrough(1,2, 3)
So,equationofplane:
11(x1) + 1(y2) + 17(z+3) = 0
11x +y+17z +38 =0
| |
-------------------------------------------------------------------------------------------------
Question136
Ifthefootoftheperpendicularfrompoint(4,3,8)ontheline
L1:xa
1=y2
3=zb
4,I 0is(3,5,7),thentheshortestdistance
betweenthelineL1andlineL2:x2
3=y4
4=z5
5isequalto
[16Mar2021Shift2]
Options:
A.1/2
B.1/√6
C.2/3
D. 1
3
P=3
i
j+2
kand Q =
i+2
j4
k
VPR = (4, 1,2)and V QS(−2,1, 2)
EquationoflinePR =3
i
j+2
k+λ 4
i
j+2
k
EquationoflineQS =
i+2
j4
k+µ2
i+
j2
k
LetTbethepointofintersection.
T= (3+, 1λ,2+)
T= (1,2+µ, 4)
3+ =1
+µ= 1.......(i)
1λ=2+µ
λ+µ= 3.....(ii)
FromEqs.(i)and(ii),
λ=2andµ= 5
T= [3+4(2)], 1 (2), 2+2(2) = (11, 3,6)
Now,DCofTAwillbeVPR ×VQS
i,
j,
k; 2,1, 2;4, 1,2=0
i4
j2
k
LT A 11
i3
j+6
k+x4
j2
k
LetA= (11, 34x,62x)
T A = 5
(11 11)2+ (−34x +3)2+ (62x 6)2= 5
(4x)2+ (2x)2=520x2=5
x2=1
4x= ± 1
2
A= [11, 34(12), 62(12)]
A= (11, 5,5)
Or
A= [11, 3+4(12), 6+2(12)]
A= (11, 1,7)
| A=112+52+52or
| A=112+12+72
| A| = 171or√171
| A| = 171
( ) ( )
( ) ( )
( ) ( )
||
( ) ( )
|
|
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question137
LetPbeanarbitrarypointhavingsumofthesquaresofthedistance
fromtheplanesx +y+z=0,I x nz =0andx 2y +z=0,equalto9.
IfthelocusofthepointPisx2+y2+z2=9,thenthevalueofI nis
equalto
[17Mar2021Shift2]
Answer:0
Solution:
L1xa
I=y2
3=zb
4
FootofperpendicularfromA(4,3,8)toL1isB(3,5,7).
AB =OB OA
=3
i+5
j+7
k4
i+3
j+8
k
=
i+2
j
k
Now,ABisperpendiculartodirectioncosineofL1,
So,
i+2
j
k
i+3
j+4
k=0
I+64=0I=2
As,(3,5,7)liesonL1,
3a
2=52
3=7b
4
3a=2
So,a=1,7b=4
So,b=3
L1x1
2=y2
3=z3
4
andL2=x2
3=y4
4=z5
5
∴Shortestdistancewillbealongcommonnormal.
So,commonnormal=
i,
j,
k;2,3,4;3,4,5
n=
i+2
j
k
n=1
6
i+2
j
k
Shortestdistancewillbetheprojectionof(21)
i+ (42)
j+ (53)
kor
i+2
j+2
kalong
n
i+2
j+2
k
i+2
j
k
6=1+42
6=1
6
( ) ( )
( ) ( )
||
( )
( ) ( )
LetP= (α,β,γ)
DistanceofpointPfromtheplanex+y+z=0is
=α+β+γ
3
DistanceofpointPfromtheplanel x nz =0is
-------------------------------------------------------------------------------------------------
Question138
Lettheplane,ax +by +cz +d=0bisectthelinejoiningthepoints
(4, 3,1)and(2,3, 5)attherightangles.Ifa,b,c,d areintegers,
thentheminimumvalueof(a2+b2+c2+d2)is.........
[18Mar2021Shift1]
Answer:28
Solution:
-------------------------------------------------------------------------------------------------
=l α
12+n2
anddistanceofpointPfromtheplanex2y +z=0is
=α +γ
6
Accordingtothequestion,
α+β+γ
3
2+l x nz
I2+n2
2+α +γ
6
2=9
∴Locusis
(x+y+z)2
3+(l x nz)2
I2+n2+(x2y +z)2
6=9
x21
2+l2
l2+n2+y2+z21
2+n2
l2+n2+xz 1 2l n
l2+n2=0
Comparingitwiththegivenequationoflocus,weget
2l n =I2+n2
(In)2=0
In=0
( ) ()( )
( ) ( ) ( )
LetP (4, 3,1)
andQ (2,3, 5)
M=P+Q
2
M4+2
2,3+3
2,15
2
M (3,0, 2)
Also,directionratiosofPQ = {42, 33,1+5}
= {2, 6,6}
⇒DirectionratiosofPQ = {1, 3,3} = directionratiosofnormaltotheplane.
∴Equationoftheplaneis
1(x3) 3(y0) + 3(z+2) = 0
x3y +3z +3=0
Comparingthistoax +by +cz +d=0,weget
a=1,b3,c=3,d=3
∴Minimumvalueof(a2+b2+c2+d2) = 28
( )
Question139
Theequationoftheplanesparalleltotheplanex 2y +2z 3=0which
areatunitdistancefromthepoint(1,2,3)isax +by +cz +d=0.If
(bd) = K(ca),thenthepositivevalueofK is..........
[18Mar2021Shift1]
Answer:4
Solution:
-------------------------------------------------------------------------------------------------
Question140
TheequationoftheplanewhichcontainstheY -axisandpassesthrough
thepoint(1,2,3)is
[17Mar2021Shift1]
Options:
A.x +3z =10
B.x +3z =0
C.3x +z=6
D.3x z=0
Answer:D
Solution:
Equationofanyplaneparalleltotheplanex2y +2z 3=0is
x2y +2z +λ=0....(i)
Given,distancefrom(1,2,3)is1.
12×2+2×3+λ
(1)2+ (−2)2+ (2)2=1
| λ+3| = 3
λ+3= ±3
λ=0, 6
Consider,λ= 6
∴Equationofrequiredplaneis
x2y +2z 6=0
Oncomparingthisequationto
ax +by +cz +d=0,weget
a=1,b= 2,c=2andd= 6
(bd) = k(ca)
4=k× (1)
⇒k=4
||
Equationofplanepassingthroughapoint(x1,y1,z1)is
a(xx1) + b(yy1) + c(zz1) = 0
-------------------------------------------------------------------------------------------------
Question141
Iffora >0,thefeetofperpendicularsfromthepointsA(a, 2a,3)and
B(0,4,5)ontheplaneI x +my +nz =0arepointsC(0, a, 1)andD
respectively,then,thelengthoflinesegmentCDisequalto
[16Mar2021Shift1]
Options:
A.31
B.41
C.55
D.66
Answer:D
Solution:
Solution:
Here,(x1,y1,z1) = (1,2,3)
So,a(x1) + b(y2) + c(z3) = 0
Now,Y-axisliesonit.
DirectionratioofY-axisis(0,1,0).
Normalvectortotheplane = a
i+b
j+c
k
So,thenormalvectoroftheplanewillbeperpendiculartodirectionratioofY-axis.
a0+b1+c0=0b=0
Equationofplanebecomes
a(x1) + c(z3) = 0
Now,x=0,z=0alsosatisfiestheequation.
a(01) + c(03) = 0
ta3c =0a= 3c
So,−3c(x1) + c(z3) = 0
3x +3+z3=0
[as,C0]
3x z=0
Given,A (a, 2a,3)
B (0,4,5)
C (0, a, 1)
EquationofplanePI x +my +nz =0
As,CisfootofperpendicularfromAtoplaneP.So,CA|N,whereNisthenormalvectortotheplane.
CA = (a0)
i+ (−2a +a)
j+ (3+1)
k
=a
ia
j+4
k
Now,CA|N
So, a
l=a
m=4
n=λ
whereλisanyrealnumber.
Pa
λxa
λy+4
λz=0
Pax ay +4z =0
( ) ( ) ( )
-------------------------------------------------------------------------------------------------
Question142
If(x,y,z)beanarbitrarypointlyingonaplaneP,whichpassesthrough
thepoints(42,0,0), (0,42,0)and(0,0,42),thenthevalueof
expression
3+x11
(y19)2(z12)2+y19
(x11)2(z12)2
+z12
(x11)2(y19)2x+y+z
14(x11)(y19)(z12)
isequalto
[16Mar2021Shift2]
Options:
A.0
B.3
C.39
D.45
Answer:B
Solution:
Solution:
Cliesonplane.
So,a0a(−a) + 4(−1) = 0
a24=0a= ±2
Asperthequestion,a>0,soa=2
So,equationofplaneP2x 2y +4z =0
Pxy+2z =0
CoordinatesofD
x0
1=y4
1=z5
2=(04+10)
[12+ (−1)2+22]
If(x,y,z)bethefootofperpendiculardrawnfrom(x1,y1,z1)totheplaneax +by +cz +d=0.
Then,
xx1
a=yy1
b=zz1
c=(ax1+by1+cz1+d)
a2+b2+c2
Here,(x,y,z) = (0,4,5)
x0= (y4) = z5
2=6
6
x= 1,y=5,z=3
C= (0, 2, 1) D= (−1,5,3)
CD = (0+1)2+ (−25)2+ (−13)2
= 1+49 +16
CD = 66
EquationofplanepassingthroughA(42,0,0), B(0,42,0)andC(0,0,42)willbe
x
42 +y
42 +z
42 =1
x+y+z=42
(x11) + (y19) + (z12) = 0
Now,
3+x11
(y19)2(z12)2+z12
(x11)2(y19)2
+y19
(x11)2(z12)2x+y+z
14(x11)(y19)(z12)
-------------------------------------------------------------------------------------------------
Question143
Iftheequationoftheplanepassingthroughthelineofintersectionof
theplanes
2x 7y +4z 3=0,3x 5y +4z +11 =0
andthepoint(−2,1,3)isax +by +cz 7=0,thenthevalueof
2a +b+c7is..........
[17Mar2021Shift1]
Answer:4
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question144
Letthemirrorimageofthepoint(1,3,a)withrespecttotheplane
r2
i
j+
kb=0be(−3,5,2).Thenthevalueof|a+b|isequalto
[18Mar2021Shift2]
Answer:1
( )
3(x11)2(y19)2(z12)2+ (x11)3+ (y19)3+ (z12)3
(x11)2(y19)2(z12)242
14(x11)(y19)(z12)
(x11)3+ (y19)3+ (z12)33(x11)(y19)(z12) + 3(x11)2(y19)2(z12)2
(x11)2(y19)2(z12)2
⇒IfA+B+C=0
Then,A3+B3+C3=3ABC
(x11)3+ (y19)3+ (z12)3=3(x11)(y19)(z12)
3(x11)(y19)(z12) 3(x11)(y19)(z12) + 3(x11)2(y19)2(z12)2
(x11)2(y19)2(z12)2
3(x11)2(y19)2(z12)2
(x11)2(y19)2(z12)=3
Equationoftheplanepassingthroughthelineofintersectionsofplanes2x 7y +4z 3=0and3x 5y +4z +11 =0
is
(2x 7y +4z 3) + λ(3x 5y +4z +11) = 0
Sincethisplanepassesthoughtthepoint(−2,1,3)
(−47+12 3) + λ(−65+12 +11) = 0
2+12λ =0λ=1/6
∴Equationofplaneis
(2x 7y +4z 3) + 1
6(3x 5y +4z +11) = 0
15x 47y +28z 7=0
a=15,b= 47,c=28
2a +b+c7=30 47 +28 7=4
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question145
LetPbeaplanecontainingtheline x1
3=y+6
4=z+5
2andparalleltothe
line x3
4=y2
3=z+5
7.Ifthepoint(1, 1,α)liesontheplaneP,thenthe
valueof||isequalto............
[18Mar2021Shift2]
Answer:38
Solution:
Solution:
Givenequationofplaneinvectorformisr2
i
j+
kb=0
ItsCartesianformwillbe
2x y+z=b...(i)
Risthemid-pointofPQ.
RP+Q
2R 1,4,a+2
2
Rliesontheplane(i).
24+a+2
2=ba+2=2b +12
a=2b +10...(ii)
∵Directionratio'sofQPis(1 (−3), 35,a2)
i.e.(4, 2,a2)
anddirectionratiosofnormaltothegivenplaneare(2, 1,1)
nandQPareparallel.
2
4=1
2=1
a2
a2=2a=4
FromEq.(ii),b= 3
| a+b|=|43|=|1| = 1
( )
( )
Equationofrequiredplaneis
x1 y +6 z +5
3 4 2
437
=0
Since,(1, 1,)liesonit,
So,replacexby1,yby(−1)andzandα
0 5 α+5
3 4 2
437
=0
+38 =0 = 38
| |
| |
-------------------------------------------------------------------------------------------------
Question146
LetPbeaplanel x +my +nz =0containingtheline, 1x
1=y+4
2=z+2
3.If
planePdividesthelinesegmentABjoiningpointsA(−3, 6,1)and
B(2,4, 3)inratiok :1,thenthevalueofkisequalto
[16Mar2021Shift1]
Options:
A.1.5
B.3
C.2
D.4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question147
Ifthedistanceofthepoint(1, 2,3)fromtheplanex +2y 3z +10 =0
measuredparalleltotheline, x1
3=2y
m=z+3
1is 7
2,thenthevalueof
|m|isequalto.........
[16Mar2021Shift2]
| | = | 38 | = 38
Pl x +my +nz =0
PcontainsL1
L1x1
1=y+4
2=z+2
3
So,(1, 4, 2)liesonplane.
14m 2n =0...(i)
And(−1,2,3)willbeperpendicularto(I,m,n).
1+2m +3n =0....(ii)
AddingEqs.(i)and(ii),
2m +n=0
n=2m
l4m 4m =0
l=8m
So,l=8mandn=2m
Plane⇒8x +y+2z =0
Now,A(−3, 6,1)andB(2,4, 3)
PlanePdividesABintheratioofk:1.
LetplanePintersectthelineABatpointO.
So,O=2k 3
k+1,4k 6
k+1,3k +1
k+1
AndOliesonplaneP,
So,8(2k 3) + (4k 6) + 2(−3k +1) = 0
14k 28 =0
k=2
( )
Answer:2
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question148
Ifthelinesxk
1=y2
2=z3
3andx+1
3=y+2
2=z+3
1areco-planar,thenthe
valueofkis_______.
[25Jul2021Shift2]
Answer:1
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question149
Given,pointA (1, 2,3)
Plane⇒x+2y 3z +10 =0
Distanceofpointfromplanealongthevector 3
im
j+
kis√7/2.
Linepassingthrough(1, 2,3)inthedirectionof
3
im
j+
kis x1
3=y+2
m=z3
1=λ
AnygeneralpointBwillbe( +1, 2,λ+3)
Now,thispointBliesonplane
So,x+2y 3z +10 =0
( +1) + 2(− 2) 3(λ+3) + 10 =0
= (32m 3)λ=2
λ= 1/m
Now,A= (1, 2,3)
B= ( +1, 2,λ+3)
|AB|2= ( +11)2+ (− 2+2)2+ (λ+33)2
7/2=2+m2λ2+λ2
7/2=10λ2+1 [∵ = 1]
10λ2=5/2λ2=1/4
⇒=±1/2m= 1/λ
m= ±2
and|m| = 2
( )
( )
k+14 6
1 2 3
3 2 1
=0
(k+1)[26] 4[19] + 6[26] = 0
k=1
| |
Iftheshortestdistancebetweenthestraightlines
3(x1) = 6(y2) = 2(z1)and4(x2) = 2(yλ) = (z3), λRis 1
38 ,
thentheintegralvalueofλisequalto:
[22Jul2021Shift2]
Options:
A.3
B.2
C.5
D.1
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question150
Iftheshortestdistancebetweenthelines
r1=α^
i+2^
j+2^
k+λ^
i2^
j+2^
k,λ R,α>0and
overrightarrow mathrm r2= 4^
i^
k+µ 3^
i2^
j2^
k,µRis9,thenα
isequalto________.
[20Jul2021Shift1]
( )
( )
L1:(x1)
2=(y2)
1=(z1)
3
r1=2^
i+^
j+3^
k
L2:(x2)
1=yλ
2=z3
4
r2=^
i+2^
j+4^
k
Shortestdistance=Projectionof
aon
r1×
r2
=
a.
r1×
r2
r1×
r2
a.
r1×
r2=
1λ22
2 1 3
1 2 4
= |14 |
r1×
r2= 38
1
38 =|14 |
38
| 14 | = 1
14 =1or14 = 1
λ=13
5or3
∴Integralvalueofλ=3
| ( ) |
| |
| ( ) | | |
| |
Answer:6
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question151
Thelinesx =ay 1=z2andx =3y 2=bz 2, (ab 0)arecoplanar,
if:
[20Jul2021Shift2]
Options:
A.b =1,aR {0}
B.a =1,bR {0}
C.a =2,b=2
D.a =2,b=3
Answer:A
Solution:
Solution:
If
r=
a+λ
band
r=
c+λ
d
thenshortestdistancebetweentwolinesis
L=
a
c.
b×
d
|b×d|
a
c= (α+4)^
i+2^
j+3^
k
b×
d
|b×d|=2^
i+2^
j+^
k
3
(α+4)^
i+2^
j+3^
k.2^
i+2^
j+^
k
3 = 9
orα=6
( ) ( )
( )
( )
( ) ( )
x+1
a=y=z1
a
x+2
3=y=z
3b
linesareCo-planar
a 1 a
3 1 3
b
101
=0 3
ba1(a3) = 0
| | ( )
-------------------------------------------------------------------------------------------------
Question152
Lettheplanepassingthroughthepoint(−1,0, 2)andperpendicular
toeachoftheplanes2x +yz=2andx yz=3be
ax +by +cz +8=0.Thenthevalueofa +b+cisequalto:
[27Jul2021Shift1]
Options:
A.3
B.8
C.5
D.4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question153
Leta,bandcbedistinctpositivenumbers.Ifthevectors
a^
i+a^
j+c^
k,^
i+^
kandc^
i+c^
j+b^
kareco-planar,thencisequalto:
[25Jul2021Shift2]
Options:
A. 2
1
a+1
b
B.a+b
2
C.1
a+1
b
D.ab
Answer:D
a3
ba+3=0
~b=1,aR {0}
Normalofreq.plane 2^
i+^
j^
k×^
i^
j^
k
= 2^
i+^
j3^
k
Equationofplane
2(x+1) + 1(y0) 3(z+2) = 0
2x +y3z 8=0
2x y+3z +8=0
a+b+c=4
( ) ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question154
LetaplanePpassthroughthepoint(3,7, 7)andcontaintheline,
x2
3=y3
2=z+2
1.IfdistanceoftheplanePfromtheoriginisd ,thend 2
isequalto_________.
[27Jul2021Shift1]
Answer:3
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question155
Forrealnumbersαandβ 0,ifthepointofintersectionofthestraight
linesxα
1=y1
2=z1
3andx4
β=y6
3=z7
3liesontheplanex +2y z=8,
thenα βisequalto:
[27Jul2021Shift2]
Options:
A.5
B.9
Becausevectorsarecoplanar
Hence
a a c
1 0 1
c c b
=0
c2=ab c= ab
| |
BA =^
i+4^
j5^
k
BA =^
i+4^
j5^
k
BA ×
l=
n=
^
i^
j^
k
32 1
1 4 5
a^
i+b^
j+c^
k= 14^
i^
j(14) + ^
k(−14)
a=1,b=1,c=1
Planeis(x2) + (y3) + (z+2) = 0
x+y+z3=0
d= 3d2=3
( )
( )
| |
C.3
D.7
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question156
ThedistanceofthepointP(3,4,4)fromthepointofintersectionofthe
linejoiningthepoints.Q(3, 4, 5)andR(2, 3,1)andtheplane
2x +y+z=7,isequalto______.
[27Jul2021Shift2]
Answer:7
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question157
LetthefootofperpendicularfromapointP(1,2, 1)tothestraight
lineL :x
1=y
0=z
1beN .
LetalinebedrawnfromPparalleltotheplanex +y+2z =0which
meetsLatpointQ.IfαistheacuteanglebetweenthelinesPN andPQ,
thencos αisequalto_________.
[25Jul2021Shift1]
Firstlineis(ϕ+α, +1, +1)
andsecondlineis( +4,3q +6,3q +7).
Forintersection
ϕ+α= +4.....(i)
+1=3q +6......(ii)
+1=3q +7........(iii)
for(ii)&(iii)ϕ=1,q= 1
So,from(i)α+β=3
Now,pointofintersectionis(α+1,3,4)
Itliesontheplane.
Hence,α=5&β= 2
QR : x3
1=y+4
1=z+5
6=r
(x,y,z) (r+3, r4, 6r 5)
Now,satisfyingitinthegivenplane.
Wegetr= 2.
so,requiredpointofintersectionisT(1, 2,7).
Hence,PT =7.
Options:
A. 1
5
B.3
2
C. 1
3
D. 1
23
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question158
LetLbethelineofintersectionofplanes
r.^
i^
j+2^
k=2and
r.2^
i+^
j^
k=2.IfP(α,β,γ)isthefootofperpendicularonLfrom
thepoint(1,2,0),thenthevalueof35(α+β+γ)isequalto:
[22Jul2021Shift2]
( )
( )
PN .^
i^
k=0
N(1,0, 1)
Now,
PQ .^
i+^
j+2^
k=0
µ= 1
Q(−1,0,1)
PN =2^
jand
PQ =2^
i+2^
j2^
k
cos α =1
3
( )
( )
Options:
A.101
B.119
C.143
D.134
Answer:B
Solution:
Solution:
P1:xy+2z =2
P2=2x +y3=2
LetlineofIntersectionofplanesP1andP2cutsxyplaneinpointQ.
⇒z-coordinateofpointQiszero
xy=2
and2x +y=2x=4
3,y=2
3
Q4
3,2
3,0
Vectorparalleltothelineofintersection
a=
^
i^
j^
k
112
2 1 1
= ^
i+5^
j+3^
k
EquationofLineofintersection
x4
3
1=
y+2
3
5=z0
3=λ(say)
Letcoordinatesoffootofperpendicularbe
Fλ+4
3, 2
3,
PF = λ+1
3
^
i+ 8
3
^
j+ ()^
k
PF .
a=0
λ1
3+25λ40
3+ =0
35λ =41
3λ=41
105
Now,α= λ+4
3,β= 2
3,γ=
α+β+γ= +2
3
=741
105 +2
3
=51
15
35(α+β+γ) = 51
15 ×35 =119
}
( )
| |
( )
( ) ( )
( )
Question159
LetPbeaplanepassingthroughthepoints(1,0,1), (1, 2,1)and
(0,1, 2).Letavector
a=α^
i+β^
j+γ^
kbesuchthat
aisparallelto
theplaneP,perpendicularto ^
i+2^
j+3^
kand
a.^
i+^
j+2^
k=2,then
(αβ+γ)2equals_______.
[20Jul2021Shift1]
Answer:81
Solution:
-------------------------------------------------------------------------------------------------
Question160
ConsiderthelineLgivenbytheequationx3
2=y1
1=z2
1.LetQbethe
mirrorimageofthepoint(2,3, 1)withrespecttoL.LetaplanePbe
suchthatitpassesthroughQ,andthelineLisperpendiculartoP.Then
whichofthefollowingpointsisontheplaneP?
[20Jul2021Shift2]
Options:
A.(−1,1,2)
B.(1,1,1)
C.(1,1,2)
D.(1,2,2)
Answer:D
( ) ( )
Equationofplane:
x1 y 0 z 1
11211
10 0 1 1 +2
=0
3x z2=0
a=α^
i+β^
j+γ^
k∥to3x z2=0
8=0.......(1)
a^
i+2^
j+3^
k
α+ +38 =0.......(2)
a.^
i+^
j+2^
k=0
α+β+28 =2.......(3)
onsolving1,2&3
α=1,β= 5,8=3
So(αβ+8) = 81
| |
( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question161
Theanglebetweenthestraightlines,whosedirectioncosinesaregiven
bytheequations2I +2m n=0andmn +nI +Im =0,is
[27Aug2021Shift2]
Options:
A.π
2
B.π cos14
9
C.cos18
9
D.π
3
Answer:A
Solution:
( )
( )
Planemathrm pis⊥rtoline
x3
2=y1
1=z2
1
&passesthroughpt.(2,3)equationofplanep
2(x2) + 1(y3) + 1(z+1) = 0
2x +y+z6=0
pt(1,2,2)satisfiesaboveequation
Given,
2l+2m−n=0....(i)
mn+nl+lm=0...(ii)
FromEq.(i),weget
n=2l+2m...(iii)
Substituting,n=2l+2minEq.(ii),wehave
m(2l+2m)+l(2l+2m)+lm=0
2 Im +2m2+2I2+2 Im +Im =0
2I2+4 Im +Im +2m2=0
⇒2l(l+2m)+m(l+2m)=0
⇒(2l+m)(l+2m)=0
When
2l=−m
FromEq(iii),
n=m
2I
1=m
1=n
1
I
1
2
=m
1=n
1
or I
1=m
2=n
2
⇒(l,m,n)=(1,−2,−2)
When
l=−2m
FromEq.(iii),
-------------------------------------------------------------------------------------------------
Question162
Thesquareofthedistanceofthepointofintersectionoftheline
x1
2=y2
3=z+1
6andtheplane2x y+z=6fromthepoint(−1, 1,2)is
[31Aug2021Shift1]
Answer:61
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question163
Thedistanceofthepoint(−1,2, 2)fromthelineofintersectionofthe
planes2x +3y +2z =0andx 2y +z=0is
[31Aug2021Shift2]
Options:
A. 1
2
B.5
2
n=−2m
⇒l=−2m=n
I
2=m
1=n
2
⇒(l,m,n)=(−2,1,−2)
∴Anglesbetweenstraightlines
cos θ =
^
i2^
j2^
k2^
i+^
j2^
k
^
i2^
j2^
k2^
i+^
j2^
k
cos θ =22+4
9=0
θ=π
2
( ) ( )
| | |
x1
2=y2
3=z+1
6=λ
x= +1
y= +2
z= 1
Equationofplaneis2x y+z=6
2( +1) ( +2) + ( 1) = 6
=7
λ=1
P(3,5,5)
(Distance)2=(3+1) + (5+1)2+ (52)2
=16 +36 +9=61
{
C.42
2
D.34
2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question164
Iftheequationofplanepassingthroughthemirrorimageofapoint
(2,3,1)withrespecttoline x+1
2=y3
1=z+2
1andcontainingtheline
x2
3=1y
2=z+1
1isαx +βy +γz =24,thenα +β+γisequalto
[17Mar2021Shift2]
Options:
A.20
B.19
C.18
D.21
Answer:B
LetLbethelineofintersectionof2x +3y +2z =0andx2y +z=0
Ifz=0,thenx=y=0
ThelineLisparalleltor1×r2,wherer1=2^
i+3^
j+2^
kandr2=^
i2^
j+^
k
^
i^
j^
k
232
121
=7^
i7^
k
DR'sofis(1,0, 1)
andequationofLisx
1=y
0=z
1=λ
LetPQbethedistancefromthepointP(−1,2, 2)tothelineL.
DRsofPQ =λ+1, 2,2λ
∴PQ⊥r
(λ+1)(1) + (−2)(0) + (2λ)(−1) = 0
λ+12+λ=0
λ=1
2
CoordinateofQis 1
2,0,1
2
PQ =11
2
2+ (20)2+ 2+1
2
2
=9
4+4+9
4=34
2
| |
( )
( ) ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question165
Supposethelinex2
α+y2
5=z+2
2liesontheplanex +3y 2z +β=0.
Then,(α+β)isequalto
[31Aug2021Shift2]
Answer:7
Solution:
LetA= (2,3,1)
L1x+1
2=y3
1=z+2
1
L2x2
3=y1
2=z+1
1
AnypointMtakenonL1is(2r 1,r+3, r2)
∴DirectionratiosofAMare(2r 3,r, r3)
AM L1
2(2r 3) + 1×r+ (−1)(−r3) = 0
4r 6+r+r+3=0
6r =3r=1
2
M=0,7
2,5
2
M=0,7
2,5
2
B (2×0) 2,2×7
23,2×5
21
B= (−2,4, 6)
Now,equationofplanecontainingB(−2,4, 6)andthelineL2is
x2 y 1 z +1
32 1
43 5
=0
(x2)(−10 +3) (y1)(15 4) + (z+1)(−9+8) = 0
⇒−7(x2) 11(y1) 1(z+1) = 0
7x 11y z= 14 11 +1
7x +11y +z=24comparingthisto
αx +βy +γz =24
Weget,α=7,β=11,γ=1
α+β+γ=7+11 +1=19
( )
( )
( ( ) ( ( ) ) )
| |
-------------------------------------------------------------------------------------------------
Question166
Lettheequationoftheplane,thatpassesthroughthepoint(1,4, 3)
andcontainsthelineofintersectionoftheplanes3x 2y +4z 7=0
andx +5y 2z +9=0beαx +βy +γz +3=0,thenα +β+γisequalto
[31Aug2021Shift1]
Options:
A.-23
B.-15
C.23
D.15
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question167
Thedistanceofthepoint(1, 2,3)fromtheplanex y+z=5
measuredparalleltoaline,whosedirectionratiosare2,3, 6is
[27Aug2021Shift1]
Options:
Givenequationofline
x2
α=y2
5=z+2
2...(i)
andplanex+3y 2z +β=0...(ii)
Line(i)pasesthrough(2,2, 2)
whichliesonplane(ii).
2+6+4+β=0
⇒β=−12
Also,givenlineisperpendiculartonormaloftheplane
α(1) 5(3) + 2(−2) = 0
⇒α=19
α+β=7
Equationofplaneis
(3x 2y +4z 7) + λ(x+5y 2z +9) = 0
(λ+3)x+ ( 2)y+ (4)z+ 7=0
Passingthrough(1,4,−3)
(λ+3) + 4( 2) 3(4) + 7=0
36λ 24 =0
λ=2
3
⇒Equationofplane
2
3+3 x +10
32 y +44
3z+67=0
11x +4y +8z 3=0
α= 11,β= 4,γ= 8
α+β+γ= 23
( ) ( ) ( )
A.3
B.5
C.2
D.1
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question168
Equationofaplaneatadistance 2
21 fromtheorigin,whichcontains
thelineofintersectionoftheplanesx yz1=0and
2x +y3z +4=0,is
[27Aug2021Shift1]
Options:
A.3x y5z +2=0
B.3x 4z +3=0
C.x+2y +2z 3=0
D.4x y5z +2=0
Answer:D
Solution:
LetAbeanypointontheplanexy+z=5andB(1, 2,3).
ThenequationofthelineABwhosedirectionratiosare2,3, 6
x1
2=y+2
3=z3
6=λ(Let)
x=1+,y= 2+,z=3
A(1+, 2+,3)
Aliesonplane.
Then,1+ (−2+) + 3 =5
1+ +2 +3 =5
λ=1
7
A9
7,11
7,15
7
Distance AB =19
7
2+ 2+11
7
2+315
7
2
=4
49 +9
49 +36
49 =1
( )
( ) ( ) ( )
Givenplanes,
xyz1=0...(i)
2x +y3z +4=0...(ii)
Equationofplanepassingthroughlineofintersectionofplanes(i)and(ii)isgivenby
-------------------------------------------------------------------------------------------------
Question169
Theequationoftheplanepassingthroughthelineofintersectionofthe
planesr .^
i+^
j+^
k=1andr .2^
i+3^
j^
k+4=0andparalleltothe
X-axisis
[27Aug2021Shift2]
Options:
A.r .^
j3^
k+6=0
B.r .^
i+3^
k+6=0
C.r .^
i3^
k+6=0
D.r .^
j3^
k6=0
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
( ) ( )
( )
( )
( )
( )
(xyz1) + λ(2x +y3z +4) = 0
( +1)x+ (λ1)y+ (− 1)z+ ( 1) = 0...(iii)
Distanceofplane(iii)fromorigin = 2
21(given)
| 1|
( +1)2+ (λ1)2+ (− +1)2 = 2
21
Squaringbothsides
( 1)2
( +1)2+ (λ1)2+ ( +1)2=2
21
21(16λ2 +1) = 2(14λ2+ +3)
308λ2184λ +15 =0
308λ2154λ 30λ +15 =0
( 1)(154λ 15) = 0
λ=1
2orλ=15
154
Puttingλ=1
2inEq.(iii),wehave
4x y5z +2=0
Given,equationofplanes
r.^
i+^
j+^
k=1...(i)
r.2^
i+3^
j^
k+4=0...(ii)
EquationofplanepassingthroughtheintersectionoftheplanesEqs.(i)and(ii)isgivenby
(x+y+z−1)+λ(2x+3y–z+4)=0
or(1+2λ)x+(1+3λ)y+(1−λ)z+(−1+4λ)=0...(iii)
Plane(iii)inparalleltoX-axis
1+2λ=0[Coefficientofx=0]
λ=1
2
∴FromEq.(iii)becomes
y−3z+6=0
orr.^
j3^
k+6=0
( )
( )
( )
Question170
LetSbethemirrorimageofthepointQ(1,3,4)withrespecttothe
plane2x y+z+3=0andletR(3,5,γ)beapointofthisplane.Then
thesquareofthelengthofthelinesegmentSRis
[27Aug2021Shift2]
Answer:72
Solution:
-------------------------------------------------------------------------------------------------
Question171
AplanePcontainsthelinex +2y +3z +1=0=xyz6andis
perpendiculartotheplane2x +y+z+8=0.Thenwhichofthe
followingpointsliesonP?
[26Aug2021Shift1]
Options:
A.(−1,1,2)
B.(0,1,1)
C.(1,0,1)
D.(2, 1,1)
Answer:B
Solution:
LetpointS(a,b,c)
Then,
a1
2=b3
1=c4
1=2(23+4+3)
4+1+1 = 2
⇒a=−3,b=5,c=2
∴S(−3,5,2)
andpointR(3,5,γ)liesontheplane2x−y+z+3=0
⇒6−5+γ+3=0
⇒γ=−4
∴R(3,5,−4)
Now,SR2=62+02+ (6)2
=36 +0+36 =72
Equationofplanecontainingthegivenplanesis
(x+2y +3z +1) + λ(xyz6) = 0
(1+λ)x+ (2λ)y+ (3λ)z+ (1) = 0
Thisplaneisperpendiculartotheplane−2x +y+z+8=0
So,−2(1+λ) + (2λ) + (3λ) = 0
2 +2λ+3λ=0
-------------------------------------------------------------------------------------------------
Question172
LetPbetheplanepassingthroughthepoint(1,2,3)andthelineof
intersectionoftheplanesr .^
i+^
j+4^
kandr . ^
i+^
j+^
k=6Then
whichofthefollowingpointsdoesnotlieonP?
[26Aug2021Shift2]
Options:
A.(3,3,2)
B.(6, 6,2)
C.(4,2,2)
D.(−8,8,6)
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question173
LetthelineLbetheprojectionofthelinex1
2=y3
1=z4
2intheplane
x2y z=3.Ifdisthedistanceofthepoint(0,0,6)fromL,thend 2is
equalto
[26Aug2021Shift1]
Answer:26
Solution:
( ) ( )
λ=3
4
So,equationofrequiredplaneis7x +5y +9z =14
Now,(0,1,1)satisfiestheaboveplane.
PisaplanepassingthroughtheintersectionofP1andP2.
EquationofP:P1+λP2=0
(x+y+4z 16) + λ(−x+y+z6) = 0...(i)
SinceplanePpassesthrough(1,2,3),then
(1+2+12 16) + λ(−1+2+36) = 0
⇒−1+λ(−2) = 0
λ=1
2
Onputtingλ=1
2inEq.(i),weget
P:3x +y+7z 26 =0
Clearly(4,2,2)notlieontheplane.
Solution:
-------------------------------------------------------------------------------------------------
Question174
LetQbethefootoftheperpendicularfromthepointP(7, 2,13)onthe
planecontainingthelinesx+1
6=y1
7=z3
8andx+1
3=y2
5=z3
7.Then
(PQ)2isequalto
[26Aug2021Shift2]
Answer:96
Solution:
Givenline,x1
2=y3
1=z4
2
Givenplane,x2y z=3
Tofindtheprojectionlet'sfindthefootofperpendicularfrom( 1,3,,4)toplanex2y z=3
x1
1=y3
2=z4
1=λ1
(λ1+1) 2(−1+3) (−λ1+4) = 3
1=12
⇒λ1=2
So,footofperpendicularfrom(1,3,4)toplanex2y z=3isA(3, 1,2).
Letusalsofindtheintersectionpointoftheplaneandline
x1
2=y3
1=z4
2=λ2
(2+1) 2(λ2+3) (2+4) = 32 = 12
⇒λ2= 6
TheintersectionpointoftheplaneandlineisB(−11, 3, 8)
LinepassingthroughAandBis
x3
14 =y+1
2=z2
10 =μ
x3
7=y+1
1=z2
5=μ
Now,let'sfindthedistancefromO(0,0,6)tothislineL.
Let'ssayC( +3,μ1, +2)isanypointonL.
Then,
{( +3) 0}.7 + {(μ1) 0}.1 + {( +2) 6}.5 =0
⇒49μ +21 +μ1+25μ 20 =0
⇒μ=0
C(3, 1,2)
Distance = (30)2+ (−10)2+ (26)2= 26
d2=26
Planecontainingthelineswouldbe
x+1 y 1 z 3
6 7 8
3 5 7
=0
| |
-------------------------------------------------------------------------------------------------
Question175
Thedistanceofline3y 2z 1=0 =3x z+4fromthepoint(2, 1,6)
is
[1Sep2021Shift2]
Options:
A.26
B.25
C.C.26
D.42
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question176
Lettheacuteanglebisectorofthetwoplanesx 2y 2z +1=0and
2x 3y 6z +1=0betheplaneP.Then,whichofthefollowingpoints
liesonP?
(x+1)(49 40) (y1)(42 24) + (z3)(30 21) = 0
9(x+1) 18(y1) + 9(z3) = 0
x2y +z=0
Now,PQwillbeequaltotheperpendiculardistanceofthepointP(7, 2,13)fromtheplanex2y +z=0
PQ =72(−2) + 13
12+ (−2)2+ (1)2
=7+4+13
1+4+1=24
6=46
PQ2= (46)2=16 ×6=96
||
| | | |
Equationofline
3y 2z 1=0=3x z+4
⇒3y 1
2=z0
1=3x +4
1
⇒
x+4
3
13=
y1
3
23=z0
1
PR = | PQ |cos θ = |PQ|PQ .P
|PQ||P| = PQ .PQ
|PR|
PR =
1
32+4
3+2
311
3+1(60)
1
9+4
9+1
=414
9
OR2=PQ2PR2
=100
9+16
9+36 224
9
=100
9+16
9+36 224
9
QR = 24 =26
|( ) ( )
|
[1Sep2021Shift2]
Options:
A. 3,1, 1
2
B. 2,0, 1
2
C.(0,2, 4)
D.(4,0, 2)
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question177
Theshortestdistancebetweenthelinesx3
3=y8
1=z3
1and
x+3
3=y+7
2=z6
4is:
[Jan.08,2020(I)]
Options:
A.230
B.7
230
C.330
D.3
Answer:C
Solution:
( )
( )
Equationofanglebisectors
x2y 2z +1
1+4+4= ±2x 3y 6z +1
4+9+36
⇒x5y +4z +4 = 0 and 13 x 23y 32z +10 = 0
Then,cos θ =1+10 8
1+4+41+25 +16 = 1
42
⇒tan θ = 41 >1
θ>45°
Then,acuteanglebisectorinplane
P:13x 23y 32z +10 =0
∴Point 2,0,1
2liesontheplaneP.
( )
AB =6^
i+15^
j+3^
k
p=^
i+4^
j+22^
k
-------------------------------------------------------------------------------------------------
Question178
Ifthefootoftheperpendiculardrawnfromthepoint(1,0,3)onaline
passingthrough(α,7,1)is,thenαisequalto_______.
[NAJan.07,2020(II)]
Answer:4
Solution:
-------------------------------------------------------------------------------------------------
Question179
IfforsomeαandβinR,theintersectionofthefollowingthreeplanes
x+4y 2z =1
x+7y 5z =β
x+5y +αz =5
isalineinR3,thenα +βisequalto:
[Jan.9,2020(I)]
Options:
A.0
B.10
C.2
q=^
i+^
j+7^
k
p×
q=
^
i^
j^
k
1 4 22
1 1 7
= 6^
i+15^
j3^
k
Shortestdistancebetweenthelinesis
=
AB .
p×
q
p×
q
= |36 +225 +9|
36 +225 +9=330
| |
|( ) |
| |
Since,PQisperpendiculartoL
15
3α5
3+7
377
3+ 317
3117
3=0
3+10
998
9+112
9=0
3=24
9α=4
( ) ( ) ( ) ( ) ( ) ( )
D.–10
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question180
Ifthedistancebetweentheplane,23x 10y 2z +48 =0andtheplane
containingthelinesx+1
2=y3
4=z+1
3andx+3
2=y+2
6=z1
λ(λR)isequalto
k
633 ,thenkisequalto________.
[NAJan.9,2020(II)]
Answer:3
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question181
Themirrorimageofthepoint(1,2,3)inaplaneis 7
3, 4
3, 1
3.Which
ofthefollowingpointsliesonthisplane?
[Jan.8,2020(II)]
( )
Δ=0
142
175
1 5 α
=0
( +25) ( +10)+(−20 +14) = 0
+9=0α= 3
Also,Dz=0
141
1 7 β
155
=0
1(35 ) (15) + 1( 7) = 0β=13
Hence,α+β= 3+13 =10
| |
| |
Since,thelinex+1
2=y3
4=z+1
3containsthepoint(-1,3,-1)andlinex+3
2=y+2
6=z1
λcontainsthepoint(-3,-2,1)
Then,thedistancebetweentheplane23x 10y 2z +48 =0andtheplanecontainingthelines=perpendiculardistance
ofplane
23x 10y 2z +48 =0eitherfrom(-1,3,-1)or(-3,-2,1)
=23(−1) 10(3) 2(−1)
(23)2+ (10)2+ (−2)2 = 3
633
Itisgiventhatdistancebetweentheplanes
=k
633 k
633 = 3
633 k=3
||
Options:
A.(1,1,1)
B.(1,–1,1)
C.(–1,–1,1)
D.(–1,–1,–1)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question182
LetPbeaplanepassingthroughthepoints(2,1,0),(4,1,1)and(5,0,
1)andRbeanypoint(2,1,6).ThentheimageofRintheplanePis:
[Jan.7,2020(I)]
Options:
A.(6,5,2)
B.(6,5,–2)
C.(4,3,2)
D.(3,4,–2)
Answer:B
Solution:
n=7
31,4
32,1
33
n=10
3,10
3,10
3
D.rofnormaltotheplane(1,1,1)
MidpointofPandQis 2
3,1
3,4
3
∴EquationofrequiredplaneQ
r.^
n=^
a.^
n
r.^
i+^
j+^
k = 2
3+1
3+4
3
∴Equationofplaneisx+y+z=1
( )
( )
-------------------------------------------------------------------------------------------------
Question183
AplanePmeetsthecoordinateaxesatA,BandCrespectively.The
centroidofΔABCisgiventobe(1,1,2).Thentheequationoftheline
throughthiscentroidandperpendiculartotheplanePis:
[Sep.06,2020(II)]
Options:
A.x1
2=y1
1=z2
1
B.x1
1=y1
1=z2
2
C.x1
2=y1
2=z2
1
D.x1
1=y1
2=z2
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question184
If(a,b,c)istheimageofthepoint(1,2,-3)intheline,x+1
2=y3
2=z
1,
thena +b+cisequalsto:
[Sep.05,2020(I)]
Options:
Equationofplaneisx+y2z =3
x2
1=y1
1=z6
2 = 2(2+112 3)
6
(x,y,z) = (6,5, 2)
α=3,β=3andγ=6asGiscentroid.
∴Theequationofplaneis
x
α+y
β+z
γ=1
x
3+y
3+z
6 = 12x +2y +z=6
∴Therequiredlineis,x1
2=y1
2=z2
1
A.2
B.–1
C.3
D.1
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question185
Thelines
r=^
i^
j+l 2^
i+^
kand
r=2^
i^
j+m^
i+^
j^
k
[Sep.03,2020(I)]
Options:
A.donotintersectforanyvaluesofl andm
B.intersectforallvaluesofl andm
C.intersectwhenl =2andm =1
2
D.intersectwhenl =1andm =2
Answer:A
Solution:
Solution:
( ) ( ) ( ) ( )
x+1
2=y3
2=z
1=λ
Anypointonline = Q( 1, +3, λ)
∴D.r.ofPQ = [ 2, +1, λ+3]
D.r.ofgivenline = [2, 2, 1]
PQisperpendiculartolineL
2( 2) 2(− +1)−1(−λ+3) = 0
4+ 2+λ3=0
9=0λ=1
QismidpointofPR =Q= (1,1, 1)
∴CoordinateofimageR= (1,0,1) = (a,b,c)
a+b+c=2
L1
r=^
i^
j+l 2^
i+^
k
L2
r=2^
i^
j+m^
i+^
j^
k
Equatingcoeff.of^
i,^
jand^
kofL1andL2
( ) ( )
( ) ( )
-------------------------------------------------------------------------------------------------
Question186
Theshortestdistancebetweenthelinesx1
0=y+1
1=z
1and
x+y+z+1=0,2x y+z+3=0is:
[Sep.06,2020(I)]
Options:
A.1
B. 1
3
C. 1
2
D.1
2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question187
Ifforsomeα R,thelinesL1:x+1
2=y2
1=z1
1andL2:x+2
α=y+1
5α=z+1
1
arecoplanar,thenthelineL2passesthroughthepoint:
[Sep.05,2020(II)]
Options:
A.(10,2,2)
B.(2,-10,-2)
C.(10,-2,-2)
2l +1=m+2......(i)
1= 1+mm=0.......(ii)
l= m.......(iii)
m=l=0whichisnotsatisfyeqn.(i)hencelinesdonotintersectforanyvalueoflandm.
Forlineofintersectionofplanesx+y+z+1=0and2x y+z+3=0:
b2=
^
i^
j^
k
111
211
= 2^
i+^
j3^
k
Puty=0,wegetx= 2andz=1
L2:r= 2^
i+^
k+λ 2^
i+^
j3^
kandL1:r=^
i^
j+µ^
j+^
kGiven)
Now,b1×b2 = 2^
i+^
j+^
kanda2oc a1= 3^
i+^
j+^
k
∴Shortestdistance = 1
3
| |
( ) ( ) ( ) ( ) (
[ ]
D.(-2,10,2)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question188
IftheequationofaplaneP,passingthroughtheintersectionofthe
planes,x +4y z+7=0and3x +y+5z =8isax +by +6z =15forsome
a,bR,thenthedistanceofthepoint(3,2,-1)fromtheplanePis
_________.
[Sep.04,2020(I)]
Answer:3
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question189
Thedistanceofthepoint(1,-2,3)fromtheplanex y+z=5measured
paralleltothelinex
2=y
3=z
6is:
[NASep.04,2020(II)]
Options:
1 3 2
211
α5α1
=0
1(−15+α) 3(2α)+2(10 +α) = 0
α= 4
∴EquationofL2:x+2
4=y+1
9=z+1
1
∴Point(2,-10,-2)liesonlineL2
| |
EquationofplanePis
(x+4y z+7) + λ(3x +y+5z 8) = 0
x(1+) + y(4+λ) + z(−1+)+(7) = 0
1+
a=4+λ
b= 1
6 = 7
15
Fromlasttworatios,λ= 1
2
a=3
b= 1
a=2,b= 3
∴Equationofplaneis,2x 3y +6z 15 =0
Distance = |66615|
7=21
7=3.
A.7
5
B.1
C.1
7
D.7
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question190
Thefootoftheperpendiculardrawnfromthepoint(4,2,3)totheline
joiningthepoints(1,-2,3)and(1,1,0)liesontheplane:
[Sep.03,2020(I)]
Options:
A.2x +yz=1
B.x y2z =1
C.x 2y +z=1
D.x +2y z=1
Answer:A
Solution:
EquationoflinethroughpointP(1, 2,3)andparalleltothelinex
2=y
3=z
6is
x1
2=y+2
3=z3
6=λ
So,anypointonline = Q( +1, 2, +3)
Since,thispointliesonplanexy+2=5
+1 +2 +3=5λ=1
7
∴Pointofintersectionlineandplane,Q=9
7,11
7,15
7
∴RequireddistancePQ
=9
712+ 11
7+22+15
732=1
( )
( ) ( ) ( )
Equationoflinethroughpoints(1,-2,3)and(1,1,0)is
-------------------------------------------------------------------------------------------------
Question191
Theplanewhichbisectsthelinejoiningthepoints(4,–2,3)and(2,4,–
1)atrightanglesalsopassesthroughthepoint:
[Sep.03,2020(II)]
Options:
A.(4,0,1)
B.(0,–1,1)
C.(4,0,–1)
D.(0,1,–1)
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question192
LetaplanePcontaintwolines
r=^
i+λ^
i+^
j,λRand
r= ^
j+µ^
j^
k,µRIfQ(α,β,γ)isthefootoftheperpendicular
drawnfromthepointM (1,0,1)toP,then3(α+β+γ)equals_______.
[NASep.03,2020(II)]
Answer:5
Solution:
( )
( )
x1
0=y1
3=z0
30( = λsay)
M(1, λ+1,λ)
DirectionratiosofPM = [−3, λ1,λ3]
PM AB
(−3) . 0+ (−1λ)(−1)+(λ3) . 1=0
λ=1
∴Footofperpendicular = (1,0,1)
Thispointsatisfytheplane2x +yz=1
Directionratiosofnormaltotheplaneare<1, 3,2>.
Planepassesthrough(3,1,1).
Equationofplaneis,
1(x3) 3(y1) + 2(z1) = 0
x3y +2z 2=0
-------------------------------------------------------------------------------------------------
Question193
Theplanepassingthroughthepoints(1,2,1),(2,1,2)andparallelto
theline,2x=3y,z=1alsothroughthepoint:
[Sep.02,2020(I)]
Options:
A.(0,6,–2)
B.(–2,0,1)
C.(0,–6,2)
D.(2,0,–1)
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question194
Normalofplane=
^
i^
j^
k
1 1 0
0 1 1
n= ^
i+^
j+^
k
Directionratiosofnormaltotheplane= < 1,1,1>
Equationofplane
1(x1) + 1(y0) + 1(z0) = 0
xyz1=0
If(x,y,z)isfootofperpendicularofM(1,0,1)ontheplanethen
x1
1=y0
1=z1
1 = (1011)
3
x=4
3,y= 1
3,z=2
3
α+β+γ=4
31
3+2
3=5
3
3(α+β+γ) = 3×5
3=5
| |
Letplanepassesthrough(2,1,2)be
a(x2) + b(y1) + (z2) = 0
Italsopassesthrough(1,2,1)
a+bc=0ab+c=0
Thegivenlineis
x
3=y
2=z1
0isparalleltoplane
3a +2b +c(0) = 0
a
02=b
30=c
2+3
a
2=b
3=c
2+3
a
2=b
3=c
5
∴planeis2x 43y +35z+10 =0
2x 3y 5z +9=0
Theplanesatisfiesthepoint(-2,0,1).
Aplanepassingthroughthepoint(3,1,1)containstwolineswhose
directionratiosare1,–2,2and2,3,–1respectively.Ifthisplanealso
passesthroughthepoint(α,-3,5),thenαisequalto:
[Sep.02,2020(II)]
Options:
A.5
B.–10
C.10
D.–5
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question195
LetSbethesetofallrealvaluesofλsuchthataplanepassingthrough
thepoints(−λ2,1,1), (1, λ2,1)and(1,1, λ2)alsopassesthroughthe
point-(-1,-1,1).ThenSisequalto:
[Jan.12,2019(II)]
Options:
A.{√3}
B.{√3, 3}
Solution:
∵Planecontainstwolines
n=
^
i^
j^
k
122
2 3 1
=^
i(26) ^
j(−14) + ^
k(3+4)
= 4^
i+5^
j+7^
k
So,equationofplaneis
4(x3) + 5(y1) + 7(z1) = 0
⇒−4x +12 +5y 5+7z−7=0
⇒−4x +5y +7z =0
Thisalsopassesthrough(α, 3,5)
So,− 15 +35 =0
⇒− = 20 α=5
| |
C.{1, 1}
D.{3, 3}
Answer:B
:
-------------------------------------------------------------------------------------------------
Question196
Theplanecontainingthelinex3
2=y+2
1=z1
3andalsocontainingits
projectionontheplane2x +3y z=5,containswhichoneofthe
followingpoints?
[Jan.11,2019(I)]
Options:
A.(2,2,0)
Solution:
-------------------------------------------------------------------------------------------------
Question197
4withtheplaney z+5=0are:
[Jan.11,2019(I)]
Options:
LetA(−λ2,1,1), B(1, λ2,1),C(1,1, λ2), D(−1, 1,1)
lieonsameplane,then
1λ22 0
2 1 λ20
2 2 λ21
=0
(λ2+1)((1λ2)24) = 0
(3λ2)(λ2+1) = 0λ2=3
λ= ±3
Hence,S= {−3, 3}
| |
Letnormaltotherequiredplaneis
n
nisperpendiculartobothvector2^
i^
j+3^
kand2^
i+3^
j3^
k
n=
^
i^
j^
k
213
2 3 1
= 8^
i+8^
j+8^
k
⇒Equationoftherequiredplaneis
(x3)(−8) + (y+2)×8+ (z1) × 8=0
(x3)(−1) + (y+2) × 1+(z1) × 1=0
x3y2z+1=0
xyz=4passesthrough(2,0,-2)
∴planecontains(2,0,-2)
| |
Thedirectionratiosofnormaltotheplanethroughthepoints(0,-1,0)
and(0,0,1)andmakinganangleπ
B.(-2,2,2)
C.(0,-2,2)
D.(2,0,-2)
Answer:D
A.2,-1,1
B.2, 2, 2
C.2,1, 1
Solution:
-------------------------------------------------------------------------------------------------
Question198
Ifthepoint(2,α,β)liesontheplanewhichpassesthroughthepoints
(3,4,2)and(7,0,6)andisperpendiculartotheplane2x 5y =15,then
3βisequalto:
[Jan.11,2019(II)]
Options:
A.12
B.7
C.5
D.17
Answer:B
Solution:
(b,c)Letthed.r'softhenormalbe‹a,b,c›
Equationoftheplaneis
a(x0) + b(y+1) + c(z0) = 0
∵Itpassesthrough(0,0,1)
b+c=0
Also 0.a+bc
a2+b2+c2. 2
= cos π
4=1
2
bc=a2+b2+c2
Andb+c=0
b= ± 1
2a
∴Thed.r'sare√2,1, 1or2, 2, 2
Letthenormaltotherequiredplaneis
n,then
n=
^
i^
j^
k
444
250
= 20^
i+8^
j12^
k
∴Equationoftheplane
(x3) × 20 + (y4) × 8+ (z2)×(−12) = 0
5x 15 +2y 83z +6=0
5x +2y 3z 17 =0.......(1)
| |
D.23,1, 1
Answer:
B & D
-------------------------------------------------------------------------------------------------
Question199
Theplanewhichbisectsthelinesegmentjoiningthepoints(–3,–3,4)
and(3,7,6)atrightangles,passesthroughwhichoneofthefollowing
points?
[Jan.10,2019(II)]
Options:
A.(–2,3,5)
B.(4,–1,7)
C.(2,1,3)
D.(4,1,–2)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question200
Onwhichofthefollowinglinesliesthepointofin-ter-sectionofthe
line,x4
2=y5
2=z3
1andtheplane,x +y+z=2?
[Jan.10,2019(II)]
Options:
A.x+3
3=4y
3=z+1
2
B.x4
1=y5
1=z5
1
Since,equationofplane(1)passesthrough(2,α,β),then10 + 17 =0 =7
Since,directionratiosofnormaltotheplaneis
n=6^
i+10^
j+2^
k
Then,equationoftheplaneis
(x0)6+ (y2)10 + (z5)2=0
3x +5y 10 +z5=0
3x +5y +z=15
Since,plane(1)satisfiesthepoint(4,1,-2)
Hence,requiredpointis(4,1,-2)
C.x1
1=y3
2=z+4
5
D.x2
2=y3
2=z+3
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question201
Thesystemoflinearequations
x+y+z=2
2x +3y +2z =5
2x +3y + (a21)z=a+1
[Jan092019I]
Options:
A.isinconsistentwhena =4
B.hasauniquesolutionfor|a| = 3
C.hasinfinitelymanysolutionsfora =4
D.isinconsistentwhen|a| = 3
Answer:D
Solution:
Solution:
Letanypointonthelinex4
2=y5
2=z3
1beA( +4, +5,λ+3)whichliesontheplanex+y+z=2
+4+ +5+λ+3=2
= 10 λ= 2
Then,thepointofintersectionis(0,1,1)
whichliesonthelinex1
1=y3
2=z+4
5
Sincethesystemoflinearequationsare
x+y+z=2.....(1)
2x +3y +2z =5.....(2)
2x +3y + (a21)z=a+1.....(1)
Now,Δ=
1 1 1
2 3 2
23a21
(ApplyingR3R3R2)
Δ=
1 1 1
2 3 2
00a23
=a23
When,Δ=0a23=0 | a| = 3
Ifa2=3,thenplanerepresentedbyeqn(2)andeqn(3)areparallel.
| |
| |
-------------------------------------------------------------------------------------------------
Question202
Theequationofthelinepassingthrough(−4,3,1),paralleltotheplane
x+2y z5=0andintersectingthelinex+1
3=y3
2=z2
1is:
[Jan092019I]
Options:
A.x4
2=y+3
1=z+1
4
B.x+4
1=y3
1=z1
3
C.x+4
3=y3
1=z1
1
D.x+4
1=y3
1=z1
1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question203
Theplanethroughtheintersectionoftheplanesx +y+z=1and
2x +3y z+4=0andparalleltoy-axisalsopassesthroughthepoint:
[Jan092019I]
Options:
A.(-3,0,-1)
B.(-3,1,1)
Hence,thegivensystemofequationisinconsistent.
Letanypointontheintersectingline
x+1
3=y3
2=z2
1=λ(say)
is(− 1, +3, λ+2)
Since,theabovepointliesonalinewhichpassesthroughthepoint(-4,3,1)
Then,directionratiooftherequiredline
=<− 1+4, +33,−λ+21>
or< +3,, λ+1>
Since,lineisparalleltotheplane
x+2y z5=0
Then,perpendicularvectortothelineis^
i+2^
j^
k
Now(− +3)(1) + ()(2)+(−λ+1)(−1) = 0
λ= 1
Nowdirectionratiooftherequiredline= < 6, 2,2>or<3,−1,1>
Hencerequiredequationofthelineis
x+4
3=y3
1=z1
1
C.(3,3,-1)
D.(3,2,1)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question204
Theequationoftheplanecontainingthestraightlinex
2=y
3=z
4and
perpendiculartotheplanecontainingthestraightlinesx
3=y
4=z
2and
x
4=y
2=z
3is:
[Jan.09,2019(II)]
Options:
A.x 2y +z=0
B.3x +2y 3z =0
C.x +2y 2z =0
D.5x +2y 4z =0
Answer:A
Solution:
Solution:
Since,equationofplanethroughintersectionofplanes
x+y+z=1and2x +3y z+4=0is
(2x +3y z+4) + λ(x+y+z1) = 0
(2+λ)x+ (3+λ)y+ (−1+λ)z+(4λ) = 0......(1)
But,theaboveplaneisparalleltoy-axisthen
(2+λ) × 0+ (3+λ) × 1+(−1+λ) × 0=0
λ= 3
Hence,theequationofrequiredplaneis
x4z +7=0
x+4z 7=0
Therefore,(3,2,1)thepassesthroughthepoint.
Letthedirectionratiosoftheplanecontaininglines
x
3=y
4=z
2andx
4=y
2=z
3is<a,b,c>
3a +4b +2c =0
4a +2b +3c =0
a
12 4=b
89=c
616
a
8=b
1=c
10
∴Directionratioofplane= < 8,1,10>
Letthedirectionratioofrequiredplaneis<l,m,n>
Then−8l +m+10n =0.......(1)
and2l +3m +4n =0.........(2)
From(1)and(2),
l
26 =m
52 =n
26
-------------------------------------------------------------------------------------------------
Question205
AtetrahedronhasverticesP(1,2,1), Q(2,1,3), R(−1,1,2)and
O(0,0,0).TheanglebetweenthefacesOPQandPQRis:
[Jan.12,2019(I)]
Options:
A.cos117
31
B.cos119
35
C.cos19
35
D.cos17
31
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question206
Twolinesx3
1=y+1
3=z6
1andx+5
7=y2
6=z3
4intersectatthepointR.The
reflectionofRinthexy-planehascoordinates:
[Jan.11,2019(II)]
Options:
A.(2,–4,–7)
( )
( )
( )
( )
∴D.R.sare<1, 2,1>
∴Equationofplane:x2y +z=0
Let
v1and
v2bethevectorsperpendiculartotheplaneOPQandPQRrespectively.
v1=PQ ×OQ=
^
i^
j^
k
121
213
= 5^
i^
j3^
k
v2=PQ ×PR=
^
i^
j^
k
112
211
= ^
i5^
j3^
k
cos θ =
v1.
v2
v1
v2
= 5+5+9
25 +1+9=19
35
θ=cos119
35
| |
| |
| | | |
( )
B.(2,4,7)
C.(2,–4,7)
D.(–2,4,7)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question207
Ifthelinesx=ay+b,z=cy+dandx=a'z+b',y=c'z+d'are
perpendicular,then:
[Jan.09,2019(II)]
Options:
A.ab'+bc'+1=0
B.cc'+a+a'=0
C.bb'+cc'+1=0
D.aa'+c+c'=0
Answer:D
Solution:
Solution:
LetthecoordinateofPwithrespecttoline
x3
1=y+1
3=z6
1=λ
x+5
7=y2
6=z3
4=µ
L1= (λ+3, 1, λ+6)
andcoordinateofPw.r.t.
lineL2= ( 5, +2, +3)
λ = 8, + =3,λ+ =3
Fromaboveequation:λ= 1,µ=1
∴CoordinateofpointofintersectionR= (2, 4,7)
ImageofRw.r.t.xyplane = (2, 4, 7)
Firstlineis:x=ay +b,z=cy +d
xb
a=y
1=zd
c
andanotherlineis:x=az+b′, y=cz+d′
xb
a=yd
c=z
1
∵Bothlinesareperpendiculartoeachother
aa + c + c=0
-------------------------------------------------------------------------------------------------
Question208
Theperpendiculardistancefromtheorigintotheplanecontainingthe
twolines,x+2
3=y2
5=z+5
7andx1
1=y4
4=z+4
7,is:
[Jan.12,2019(I)]
Options:
A.116
B.11 6
C.11
D.611
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question209
Ifananglebetweentheline,x+1
2=y2
1=z3
2andtheplane,
x2y kx =3iscos122
3,thenavalueofkis
[Jan.12,2019(II)]
Options:
A. 5
3
B. 3
5
C.3
5
D.5
3
( )
∵planecontainingbothlines.
D.R.ofplane=
^
i^
j^
k
357
147
= 7^
i14^
j+7^
k
Now,equationofplaneis,
7(x1) 14(y4) + 7(z+4) = 0
x12y +8+z+4=0
x2y +z+11 =0
Hence,distancefrom(0,0,0)totheplane,
=11
1+4+1 = 11
6
| |
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question210
Ifthelengthoftheperpendicularfromthepoint(β,0,β)( β0)tothe
line,x
1=y1
0=z+1
1is 3
2,thenβisequalto:
[April10,2019(I)]
Options:
A.1
B.2
C.–1
D.–2
Answer:C
Solution:
Solution:
Letanglebetweenlineandplaneisθ,then
sin θ =
b.
n
b.
n
=2^
i+^
j2^
k.^
i2^
jK^
k
9.1+4+K2
=222K
35+K2=2|K|
34+K2
Since,cos θ =22
3sin θ =1
3
Then, 2|K|
35+K2=1
34K 2=5+K2
3K 2=5K= ± 5
3
|| | | | |
|( ) ( )
|
||
Given,x
1=y1
0=z+1
1=p(let)andpointP(β,0,β)
AnypointonlineA= (p,1, p1)
Now,DRofAPa"<pβ,10, p1β>
Whichisperpendiculartoline.
(pβ)1+0.1 1(−p1β) = 0
pβ+p+1+β=0p=1
2
∴PointA1
2,11
2
GiventhatdistanceAP =3
2AP2=3
2
β+1
2
2+1+β+1
2
2=3
2or2 β +1
2
2=1
2
( )
( ) ( ) ( )
-------------------------------------------------------------------------------------------------
Question211
TheverticesBandCofa"ABClieontheline,x+2
3=y1
0=z
4suchthat
BC =5units.Thenthearea(insq.units)ofthistriangle,giventhatthe
pointA(1, 1,2),is:
[April09,2019(II)]
Options:
A.517
B.234
C.6
D.34
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question212
IfapointR(4,y,z)liesonthelinesegmentjoiningthepointsP(2,–3,4)
β+1
2
2=1
4β=0, 1, (β0)
β= 1
( )
LetapointDonBC = ( 2,1,)
AD = ( 3)^
i+2^
j+ ( 2)^
k
AD BC,
AD .BC =0
( 3) + 3+2(0) + ( 2)4=0
λ=17
25
Hence,D=1
25,1,68
25
|AD| = 1
25 12+ (2)2+68
25 22
=(24)2+4(25)2+ (18)2
25 = 3400
25 =234
5
Areaoftriangle = 1
2×BC ×AD
=1
2×5×234
5= 34
( )
( ) ( )
| | | |
andQ(8,0,10),thendistanceofRfromtheoriginis:
[April08,2019(II)]
Options:
A.214
B.221
C.6
D.53
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question213
Aperpendicularisdrawnfromapointonthelinex1
2=y+1
1=z
1tothe
planex +y+z=3suchthatthefootoftheperpendicularQalsolieson
theplanex y+z=3.Thentheco-ordinatesofQare:
[April10,2019(II)]
Options:
A.(1,0,2)
B.(2,0,1)
C.(–1,0,4)
D.(4,0,–1)
Answer:B
Solution:
Solution:
Here,P,Q,Rarecollinear
PR =λPQ
2^
i+ (y+3)^
j+ (z4)^
k = λ 6^
i+3^
j+6^
k
=2,y+3=,z4=
λ=1
3,y= 2,z=6
∴PointR(4, 2,6)
Now,OR =(4)2+ (−2)2+ (6)2 = 56 =214
[ ]
-------------------------------------------------------------------------------------------------
Question214
Thelengthoftheperpendicularfromthepoint(2,-1,4)onthestraight
line,x+3
10 =y2
7=z
1is:
[April08,2019(I)]
Options:
A.greaterthan3butlessthan4
B.lessthan2
C.greaterthan2butlessthan3
D.greaterthan4
Answer:A
Solution:
Solution:
Letco-ordinatesofQbe(α,β,γ),then
α+β+γ=3.....(i)
αβ+γ=3.....(ii)
α+γ=3andβ=0
Equatingdirectionratio'sofPQ,weget
α 1
1=λ+1
1=γλ
1
α= +2,γ= +1
Substitutingthevaluesofαandγinequation(i),weget
+3=3λ=0
Hence,pointisQ(2,0,1)
LetPbethefootofperpendicularfrompointT(2, 1,4)onthegivenline.SoPcanbeassumedasP
(10λ 3, +2,λ)
DR'sofT P proptoto10λ 5, +3,λ4
T Pandgivenlineareperpendicular,so10(10λ 5) 7(− +3)+1(λ4) = 0
λ=1
2
T P =(10λ 5)2+ (− +3)2+ (λ4)2
=0+1
4+49
4= 12.5 =3.54
Hence,thelengthofperpendicularisgreaterthan3butlessthan4
-------------------------------------------------------------------------------------------------
Question215
Ifthelinex2
3=y+1
2=z1
1intersectstheplane2x +3y z+13 =0ata
pointPandtheplane3x +y+4z =16atapointQ,thenPQisequalto:
[April12,2019(I)]
Options:
A.14
B.14
C.27
D.214
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question216
Aplanewhichbisectstheanglebetweenthetwogivenplanes2x–y+2z
–4=0andx+2y+2z–2=0,passesthroughthepoint:
[April12,2019(II)]
Options:
A.(1,–4,1)
B.(1,4,–1)
C.(2,4,1)
D.(2,–4,1)
Answer:D
Solution:
Solution:
LetpointsP( +2, 1, λ+1)andQ( +2, 1, µ+1)
Plieson2x +3y z+13 =0
+4+ 3+λ−1+13 =0
13λ = 13 λ= 1
Hence,P(−1, 3,2)
Similarly,Qlieson3x +y+4z =16
+6+ 1+4=16
=7µ=1
Hence,Qis(5,1,0)
Now,PQ = 36 +16 +4 = 56 =214
Theequationsofanglebisectorsare,
-------------------------------------------------------------------------------------------------
Question217
Thelengthoftheperpendiculardrawnfromthepoint(2,1,4)tothe
planecontainingthelines
r=^
i+^
j+λ^
i+2^
j^
kand
r=^
i+^
j+µ^
i+^
j2^
kis:
[April12,2019(II)]
Options:
A.3
B.1
3
C.3
D. 1
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question218
IfQ(0, 1, 3)istheimageofthepointPintheplane3xy +4z =2
andRisthepoint(3, 1, 2),thenthearea(insq.units)ofΔPQRis:
[April10,2019(I)]
Options:
A.213
B.91
4
C.91
2
( ) ( )
( ) ( )
x+2y +2z 23 = ±2x y+2z 4
3
x3y 2=0
or3x +y+4z 6=0
(2,-4,1)liesonthesecondplane.
Theequationofplanecontainingtwogivenlinesis,
x1 y 1z
1 2 1
112
=0
Onexpanding,wegetxyz=0
Now,thelengthofperpendicularfrom(2,1,4)tothisplane
=214
12+12+12 = 3
| |
||
D.65
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question219
Iftheplane2x y+2z +3=0hasthedistances1
2and2
3unitsfromthe
planes4x 2y +4z +λ=0and2x y+2z+µ =0,respectively,thenthe
maximumvalueofλ +µisequalto:
[April10,2019(II)]
Options:
A.9
B.15
C.5
D.13
Answer:D
Solution:
Solution:
ImageofQ(0, 1, 3)inplaneis,
(x0)
3=(y+1)
1=z+3
+4 = 2(112 2)
9+1+16 =1
x=3,y= 2,z=1
P(3, 2,1), Q(0, 1, 3), R(3, 1, 2)
∴AreaofΔPQRis
1
2
QP ×
QR = 1
2
^
i^
j^
k
314
301
=1
2
^
i(−1) ^
j(312) + ^
k(3)
=1
2(1+81 +9)=91
2
| | | | | |
|{ } |
Let,P1:2x y+2z +3=0
P2:2x y+2z+λ
2=0
P3:2x y+2z +µ=0
Given,distancebetweenP1andP2is1
3
1
3=
3λ
2
93λ
2=1λmax =8
AnddistancebetweenP1andP3is2
3
2
3=|µ3|
9µmax =5
| | | |
-------------------------------------------------------------------------------------------------
Question220
Iftheline,x1
2=y+1
3=z2
4meetstheplane,x +2y +3z =15atapointP,
thenthedistanceofPfromtheoriginis:
[April092019I]
Options:
A.52
B.25
C.9 2
D.7 2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question221
Aplanepassingthroughthepoints(0,-1,0)and(0,0,1)andmakingan
angleπ
4withtheplaney z+5=0,alsopassesthroughthepoint:
[April092019I]
Options:
A.(−2,1, 4)
B.(√2, 1,4)
C.(−2, 1, 4)
D.(√2,1,4)
Answer:D
Solution:
(λ+µ)max =13
LetpointonlinebeP(2k +1,3k 1,4k +2)
Since,pointPliesontheplanex+2y +3z =15
2k +1+6k 2+12k+6=15
k=1
2
P2,1
2,4
ThenthedistanceofthepointPfromtheoriginisOP =4+1
4+16 =9
2
( )
Solution:
-------------------------------------------------------------------------------------------------
Question222
LetPbetheplane,whichcontainsthelineofintersectionoftheplanes,
x+y+z6=0and2x +3y +z+5=0anditisperpendiculartothexy-
plane.Thenthedistanceofthepoint(0,0,256)fromPisequalto:
[April09,2019(II)]
Options:
A.17 5
B.635
C.2055
D.11 5
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question223
Theequationofaplanecontainingthelineofintersectionoftheplanes
2x y4=0andy +2z 4=0andpassingthroughthepoint(1,1,0)is:
[April082019I]
Options:
A.x 3y 2z = 2
B.2x z=2
Lettherequiredplanepassingthroughthepoints(0,-1,0)and(0,0,1)bex
λ+y
1+z
1=1andthegivenplaneis
yz+5=0
cos π
4=11
1
λ2+1+12
λ2=1
21
λ= ±2
Then,theequationofplaneis±2xy+z=1
Thenthepoint(√2,1,4)satisfiestheequationofplane
( )
Lettheplanebe
P (2x +3y +z+5)+λ(x+y+z6) = 0
∵aboveplaneisperpendiculartoxyplane.
(2+λ)^
i+ (3+λ)^
j+ (1+λ)^
k.^
k=0λ= 1
Hence,theequationoftheplaneis,
Px+2y +11 =0
DistanceoftheplanePfrom(0,0,256)
0+0+11
5=11
5
( )
| |
C.x yz=0
D.x +3y +z=4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question224
Thevectorequationoftheplanethroughthelineofintersectionofthe
planesx +y+z=1and2x +3y +4z =5whichisperpendiculartothe
planex y+z=0is:
[April08,2019(II)]
Options:
A.
r×^
i^
k+2=0
B.
r.^
i^
k2=0
C.
r×^
i+^
k+2=0
D.
r.^
i^
k+2=0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question225
Thelengthoftheprojectionofthelinesegmentjoiningthepoints(5,–
1,4)and(4,–1,3)ontheplane,x+y+z=7is:
( )
( )
( )
( )
Lettheequationofrequiredplanebe;
(2x y4) + λ(y+2z 4) = 0
∵Thisplanepassesthroughthepoint(1,1,0)then(2−14) + λ(1+04) = 0
λ= 1
Then,equationofrequiredplaneis,
(2x y4) (y+2z 4) = 0
2x 2y 2z =0xyz=0
Equationoftheplanepassingthroughthelineofintersectionofx+y+z=1and2x +3y +4z =5is
(2x +3y +4z 5)+λ(x+y+z1) = 0
(2+λ)x+ (3+λ)y+ (4+λ)z+(−5λ) = 0.......(i)
∵plane(i)isperpendiculartotheplanexy+z=0
(2+λ)(1) + (3+λ)(−1)+(4+λ)(1) = 0
2+λ3λ+4+λ=0λ= 3
Hence,equationofrequiredplaneis
x+z2=0orxz+2=0
r.^
i^
k+2=0
( )
[2018]
Options:
A.2
3
B.1
3
C. 2
3
D. 2
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question226
Ananglebetweenthelineswhosedirectioncosinesaregivenbythe
equations,l +3m +5n =0and5l m 2mn +6nl =0,is
[OnlineApril15,2018]
Options:
A.cos11
8
B.cos11
6
C.cos11
3
D.cos11
4
Answer:B
( )
( )
( )
( )
AC =
AB .^
AC = ^
i+^
k.
^
i+^
j+^
k
3 = 2
3
Now,AB = BC =AB2AC2 = 24
3=2
3
∴Lengthofprojection = 2
3
( ) ( )
Solution:
-------------------------------------------------------------------------------------------------
Question227
Iftheanglebetweenthelines,x
2=y
2=z
1and5x
2=7y 14
P=z3
4iscos12
3,
thenPisequalto
[OnlineApril16,2018]
Options:
A.7
4
B.2
7
C.4
7
D.7
2
Answer:D
Solution:
Solution:
( )
Given
l+3m +5n =0.......(1)
and5l m 2mn +6nl =0.......(2)
Fromeq.(1)wehave
l= 3m 5n
Putthevalueoflineq.(2),weget;
Putthevalueoflineq.(2),weget;
5(−3m 5n)m2mn +6n(−3m 5n) = 0
15m2+45mn +30n2=0
m2+3mn +2n2=0
m2+2mn +mn +2n2=0
(m+n)(m+2n) = 0
m= norm= 2n
Form= n,l= 2n
Andform= 2n,l=n
(l,m,n) = (−2n, n,n)Or(l,m,n) = (n, 2n,n)
(l,m,n) = (−2, 1,1)Or(l,m,n) = (1, 2,1)
Therefore,anglebetweenthelinesisgivenas:
cos(θ) = (−2)(1) + (−1) . (−2) + (1)(1)
6. 6
cos(θ) = 1
6θ=cos11
6
( )
Letθbetheanglebetweenthetwolines
Heredirectioncosinesofx
2=y
2=z
1are2,2,1
Alsosecondlinecanbewrittenas:
x5
2=y2
P
7
=z3
4
∴itsdirectioncosinesare2,P
7,4
-------------------------------------------------------------------------------------------------
Question228
IfL1isthelineofintersectionoftheplanes
2x 2y +3z 2=0,xy+z+1=0andL2isthelineofintersectionof
theplanesx +2y z3=0,3x y+2z 1=0,thenthedistanceofthe
originfromtheplane,containingthelinesL1andL2,is:
[2018]
Options:
A. 1
32
B. 1
22
C. 1
2
D. 1
42
Answer:A
Solution:
Solution:
Also,cos θ =2
3(Given)
cos θ =a1a2+b1b2+c1c2
a1
2+b1
2+c1
2a2
2+b2
2+c2
2
2
3=
(2×2) + 2×P
7+ (1×4)
22+22+1222+P2
49 +42
=
4+2P
7+4
3×22+P2
49 +42
4+P
7
2=20 +P2
49⇒16 +8P
7+P2
49 =20 +P2
49
8P
7=4P=7
2
| |
|( )
|
( )
Equationofplanepassingthroughthelineofintersectionoffirsttwoplanesis:
(2x 2y +3z 2)+λ(xy+z+1) = 0
orx(λ+2) y(2+λ) + z(λ+3)+(λ2) = 0......(i)
ishavinginfinitenumberofsolutionwith
x+2y z3=0and3x y+2z 1=0,then
(λ+2) (λ+2) (λ+3)
1 2 1
312
=0
Nowputλ=5in(i),weget
7x 7y +8z +3=0
Nowperpendiculardistancefrom(0,0,0)totheplacecontainingL1andL2=3
162 =1
32
| |
-------------------------------------------------------------------------------------------------
Question229
Thesumoftheinterceptsonthecoordinateaxesoftheplanepassing
throughthepoint(-2,-2,2)andcontainingthelinejoiningthepoints
(1,-1,2)and(1,1,1)is
[OnlineApril16,2018]
Options:
A.12
B.-8
C.-4
D.4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question230
Avariableplanepassesthroughafixedpoint(3,2,1)andmeetsx,yand
zaxesatA,BandCrespectively.Aplaneisdrawnparalleltoyzplane
throughA,asecondplaneisdrawnparallelzxplanethroughBanda
thirdplaneisdrawnparalleltoxyplanethroughC.Thenthelocusof
Equationofplanepassingthroughthreegivenpointsis:
xx1yy1zz1
x2x1y2y1z2z1
x3x1y3y1z3z1
=0
x+2 y +2 z 2
1+21+2 2 2
1+2 1 +2 1 2
=0
x+2 y +2 z 2
3 1 0
3 3 1
=0
⇒−x+3y +6z 8=0
x
83y
86z
8+8
8=0
x
8y
8
3
z
8
6
= 1
x
8+y
8
3
+z
8
6
=1
∴Sumofintercepts = 8+8
3+8
6= 4
| |
| |
| |
thepointofintersectionofthesethreeplanes,is
[OnlineApril15,2018]
Options:
A.x +y+z=6
B.x
3+y
2+z
1=1
C.3
x+2
y+1
z=1
D.1
x+1
y+1
z=11
6
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question231
Ananglebetweentheplane,x +y+z=5andthelineofintersectionof
theplanes,3x +4y +z1=0and5x +8y +2z +14 =0,is
[OnlineApril15,2018]
Options:
A.cos13
17
B.cos13
17
C.sin13
17
D.sin13
17
Answer:D
Solution:
Solution:
( )
()
( )
()
Ifa,b,caretheinterceptsofthevariableplaneonthex,y,zaxesrespectively,thentheequationoftheplaneis
x
a+y
b+z
c=1
Andthepointofintersectionoftheplanesparalleltothexy,yzandzxplanesis(a,b,c).
Asthepoint(3,2,1)liesonthevariableplane,so
3
a+2
b+1
c=1
Therefore,therequiredlocusis3
x+2
y+1
z=1
Normalto3x +4y +z=1is3^
i+4^
j+^
k.
-------------------------------------------------------------------------------------------------
Question232
Aplanebisectsthelinesegmentjoiningthepoints(1,2,3)and(–3,4,
5)atrightangles.Thenthisplanealsopassesthroughthepoint.
[OnlineApril15,2018]
Options:
A.(–3,2,1)
B.(3,2,1)
C.(1,2,–3)
D.(–1,2,3)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question233
IftheimageofthepointP(1, 2,3)intheplane,2x +3y 4z +22 =0
measuredparalleltoline,x
1=y
4=z
5isQ,thenPQisequalto:
[2017]
Options:
A.65
B.35
C.242
Normalto5x +8y +2z = 14is5^
i+8^
j+2^
k
Thelineofintersectionoftheplanesisperpendiculartobothnormals,so,directionratiosoftheintersectionlineare
directlyproportionaltothecrossproductofthenormalvectors.
Thereforethedirectionratiosofthelineis−^
j+4^
k
Hencetheanglebetweentheplanex+y+z+5=0andtheintersectionlineissin11+4
173=sin13
17
( ) ()
Sincetheplanebisectsthelinejoiningthepoints(1,2,3)and(-3,4,5)thentheplanepassesthroughthemidpointofthe
linewhichis:
13
2,2+4
2,5+3
22
2,6
2,8
2≡(−1,3,4)
Asplanecutsthelinesegmentatrightangle,sothedirectioncosinesofthenormaloftheplaneare
(−31,42,53) = (−4,2,2)
Sotheequationoftheplaneis:4x +2y +2z =λ
Asplanepassesthrough(-1,3,4)so
4(−1) + 2(3) + 2(4) = λλ=18
Therefore,equationofplaneis:4x +2y +2z =18
Now,only(-3,2,1)satisfiesthegivenplaneas
4(−3) + 2(2) + 2(1) = 18
( ) ( )
D.42
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question234
Thedistanceofthepoint(1,3,-7)fromtheplanepassingthroughthe
point(1, 1, 1),havingnormalperpendiculartoboththelines
x1
1=y+2
2=z4
3andx2
2=y+1
1=z+7
1,is:
[2017]
Options:
A. 10
74
B. 20
74
C. 10
83
D. 5
83
Answer:C
Solution:
Solution:
EquationoflinePQis
x1
1=y+2
4=z3
5
LetFbe(λ+1, 2, +3)
SinceFliesontheplane
2(λ+1) + 3( 2) 4( +3)+22 =0
+2+12λ 620λ 12+22 =0
⇒− +6=0λ=1
Fis(2,2,8)
PQ =2PF =2 12+42+52 = 242
Lettheplanebe
a(x1) + b(y+1) + c(z+1) = 0
Normalvector
-------------------------------------------------------------------------------------------------
Question235
Ifx =a,y=b,z=cisasolutionofthesystemoflinearequations
x+8y +7z =0
9x +2y +3z =0
x+y+z=0
suchthatthepoint(a,b,c)liesontheplanex +2y +z=6,then
2a +b+cequals:
[OnlineApril9,2017]
Options:
A.-1
B.0
C.1
D.2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question236
Ifavariableplane,atadistanceof3unitsfromtheorigin,intersects
thecoordinateaxesatA,BandC,thenthelocusofthecentroidof
ΔABCis:
[OnlineApril9,2017]
^
i^
j^
k
12 3
211
= 5^
i+7^
j+3^
k
Soplaneis5(x1) + 7(y+1) + 3(z+1) = 0
5x +7y +3z +5=0
Distanceofpoint(1,3,-7)fromtheplaneis
5+21 21 +5
25 +49 +9 = 10
83
| |
x+8y +7z =0
9x +2y +3z =0
x+y+z=0
x=λ y = z =
x=λ y = z =
Now,λ+12λ =6
=6
λ=1
+
=λ
=1
Options:
A. 1
x2+1
y2+1
z2=1
B. 1
x2+1
y2+1
z2=3
C. 1
x2+1
y2+1
z2=1
9
D. 1
x2+1
y2+1
z2=9
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question237
Iftheline,x3
1=y+2
1=z+λ
2liesintheplane,2x4y +3z =2,thenthe
shortestdistancebetweenthislineandtheline,x1
12 =y
9=z
4is:
[OnlineApril9,2017]
Options:
A.2
B.1
C.0
D.3
Answer:C
Solution:
Solution:
Supposecentroidbe(h,k,l)
xint p =3h,yint p =3k,zint p =3l
Equation x
3h +y
3k +z
3l =1
∴Distancefrom(0,0,0)
1
1
9h2+1
9k2+1
9l 2
=3
1
x2+1
y2+1
z2=1
||
Point(3, 2, λ)onpline2x 4y +3z 2=0 = 6+8 2 = 0= =12
λ=4
Now,
x3
1=y+2
1=z+4
2=k1......(i)
x1
12 =y
9=z
4=k2.......(ii)
-------------------------------------------------------------------------------------------------
Question238
Thecoordinatesofthefootoftheperpendicularfromthepoint(1,-2,1)
ontheplanecontainingthelines,x+1
6=y1
7=z3
8andx1
3=y2
5=z3
7,is:
[OnlineApril8,2017]
Options:
A.(2,-4,2)
B.(-1,2,-1)
C.(0,0,0)
D.(1,1,1)
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question239
Thelineofintersectionoftheplanes
r.3^
i^
j+^
k=1 and
r.^
i+4^
j2^
k=2,is:
[OnlineApril8,2017]
Options:
A.
x4
7
2=y
7=
z5
7
13
( )
( )
Pointonequation(i)P(k1+3, k12, 2k14)
Pointonequation(ii)Q(12k2+1,9k2,4k2)
k1+3=12k2+1| k12 = 9k2| 2k14=4k2
k2=0
k1= 2
p(1,0,0)lieonequationofaline1
givesshortestdistance = 0
n=
n1×
n2=
^
i^
j^
k
678
357
= (9, 18,9) = (1, 2,1)
∴Equationofplaneis
1(x+1) 2(y1) + (z3) = 0
x2y +z=0
foottoz
x1
1=y+2
2=z1
1 = [1+4+1]
6
x=0,y=0,z=0
| |
B.
x4
7
2=y
7=
z+5
7
13
C.
x6
13
2=
y5
13
7=z
13
D.
x6
13
2=
y5
13
7=z
13
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question240
ABCistriangleinaplanewithverticesA(2,3,5), B( 1,3,2)and
C(λ,5,µ).IfthemedianthroughAisequallyinclinedtothecoordinate
axes,thenthevalueof(λ3+µ3+5)is:
[OnlineApril10,2016]
Options:
A.1130
B.1348
C.1077
D.676
Answer:B
Solution:
Solution:
n=
n1×
n2
^
i^
j^
k
311
1 4 2
= ^
i(−2) ^
j(−7) + ^
k(13)⇒
n= 2^
i+7^
j+13^
k
Now,
3x y+z=1
x+4y 2z =2
butz=0&solvingthegiven
x=613&y =513
∴requiredequationofalineis
x613
2=y513
7=z
13
| |
DR'sofADareλ1
22,43,µ+22 5
i.e.λ5
2,1,µ8
2
∵Thismedianismakingequalangleswithcoordinateaxes,therefore,
-------------------------------------------------------------------------------------------------
Question241
Thenumberofdistinctrealvaluesoflambdaforwhichthelines
x1
1=y2
2=z+3
λ2andx3
1=y2
λ2=z1
2arecoplanaris:
[OnlineApril10,2016]
Options:
A.2
B.4
C.3
D.1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question242
Theshortestdistancebetweenthelinesx
2=y
2=z
1andx+2
1=y4
8=z5
4lies
intheinterval:
[OnlineApril9,2016]
Options:
λ5
2=1=µ8
2
λ=7&µ =10
λ3+µ3=5=1348
Linesarecoplanar
31 2 2 1 (−3)
1 2 λ2
1λ22
=0
2 0 4
1 2 λ2
1λ22
=0
2(4λ4) + 4(λ22) = 0
4λ4+24=0λ2(λ22) = 0
λ=0, 2, 2
| |
| |
A.(3,4]
B.(2,3]
C.[1,2)
D.[0,1)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question243
Iftheline,x3
2=y+2
1=z+4
3liesintheplane,1x +my z=9,thenl 2+m2
isequalto:
[2016]
Options:
A.5
B.2
C.26
D.18
Answer:B
Solution:
Solution:
Shortestdistancebetweentwolines
xx1
a1
=yy1
b1
=zz1
c1
andxx2
a2
=yy2
b2
=zz2
c2
isgivenby,
x2x1y2y1z2z1
a1b1c1
a2b2c2
(b1c2b2c1)2+ (c1a2c2a1)2+ (a1b2a2b1)2
∴Theshortestdistancebetweengivenlinesare
24 5
2 2 1
18 4
(88)2+ (−18)2+ (16 +2)2
=036 +90
405 =54
20.1 =2.68
|| |
|
|| |
|
| |
Lineliesintheplane⇒(3, 2, 4)lieintheplane
3l 2m +4=9or3l 2m =5.......(1)
Also,l,m, 1aredr'soflineperpendiculartoplaneand2.-1,3aredr'soflinelyingintheplane
2l m3=0or2l m=3.......(2)
Solving(1)and(2)wegetl=1andm= 1
-------------------------------------------------------------------------------------------------
Question244
Thedistanceofthepoint(1,-5,9)fromtheplanex y+z=5measured
alongthelinex =y=zis:
[2016]
Options:
A.10
3
B.20
3
C.310
D.103
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question245
Thedistanceofthepoint(1,-2,4)fromtheplanepassingthroughthe
point(1,2,2)andperpendiculartotheplanesx y+2z =3and
2x 2y +z+12 =0,is
[OnlineApril9,2016]
Options:
A.2
l2+m2=2
E qnofPO :x1
1=y+5
1=z9
1=λ
x=λ+1;y=λ5;z=λ+9
Puttingtheseineqnofplane:
λ+1λ+5+λ+9=5
λ= 10
Ois(-9,-15,-1)
⇒distanceOP =103
B.2
C.22
D. 1
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question246
Theequationoftheplanecontainingtheline2x 5y +z=
3;x+y+4z =5,andparalleltotheplane,x +3y +6z =1,is:
[2015]
Options:
A.x +3y +6z =7
B.2x +6y +12z = 13
C.2x +6y +12z =13
D.x +3y +6z = 7
Answer:A
Solution:
Solution:
Letequationofplanebe
a(x1) + b(y2) + c(z2) = 0.......(1)
isperpendiculartogivenplanesthen
ab+2c =0
2a 2b +c=0
Solvingaboveequationc=0anda=b
equationofplane(1)canbe
x+y3=0
distancefrom(1,-2,4)willbe
D=|123|
1+1=4
2=22
Equationoftheplanecontainingthelines
2x 5y +z=3andx+y+4z =5is
2x 5y +z3+λ(x+y+4z 5) = 0
(2+λ)x+ (−5+λ)y+ (1+)z+ (−3) = 0
Sincetheplane(i)paralleltothegivenplane
x+3y +6z =1
2+λ
1=5+λ
3=1+
6
λ= 11
2
Henceequationoftherequiredplaneis
211
2x+ 511
2y+144
2z+ 3+55
2=0
(411)x+ (−10 11)y+ (244)z+(−6+55) = 0
⇒−7x 21y 42z +49 =0
( ) ( ) ( ) ( )
-------------------------------------------------------------------------------------------------
Question247
Thedistanceofthepoint(1,0,2)fromthepointofintersectionofthe
linex2
3=y+1
4=z2
12 andtheplanex y+z=16,is
[2015]
Options:
A.321
B.13
C.214
D.8
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question248
Theshortestdistancebetweenthez-axisandthelinex+y+2z 3
=0=2x +3y +4z 4,is
[OnlineApril11,2015]
Options:
A.1
B.2
C.4
D.3
Answer:B
Solution:
x+3y +6z 7=0
x+3y +6z =7
Generalpointongivenline≡P(3r +2,4r 1,12r +2)
PointPmustsatisfyequationofplane
(3r +2) (4r 1) + (12r +2) = 16
11r +5=16
r=1
P(3×1+2,4×11,12 ×1+2) = P(5,3,14)
distancebetweenPand(1,0,2)
D=(51)2+32+ (14 2)2 = 13
-------------------------------------------------------------------------------------------------
Question249
Aplanecontainingthepoint(3,2,0)andthelinex1
1=y2
5=z3
4also
containsthepoint:
[OnlineApril11,2015]
Options:
A.(0,3,1)
B.(0,7,-10)
C.(0,-3,1)
D.0,7,10
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question250
Ifthepoints(1,1,λ)and(-3,0,1)areequidistantfromtheplane,
3x +4y 12z +13 =0,thenλsatisfiestheequation:
[OnlineApril10,2015]
Theequationofanyplanepassingthroughgivenlineis
(x+y+2z 3) + λ(2x +3y+4z 4) = 0
(1+)x+ (1+)y+ (2+)z−(3+) = 0
Ifthisplaneisparalleltoz-axisthennormaltotheplanewillbeperpendiculartoz-axis.
(1+)(0) + (1+)(0)+(2+)(1) = 0
λ= 1
2
Thus,Requiredplaneis
(x+y+2z 3) 1
2(2x +3y +4z 4) = 0⇒y+2=0
S.D=2
(1)2=2
Equationoftheplanecontainingthegivenline
x1
1=y2
5=z3
4is
A(x1) + B(y2) + C(z3) = 0......(i)
whereA+5B +4C =0.......(ii)
Sincethepoint(3,2,0)containsintheplane(i),therefore2A +0.B3C =0.......(iii)
Fromequations(ii)and(iii),
A
15 0=B
6+3=C
010 =k(let)
A= 15k,B=9kandC= 10k
PuttingthevalueofA,BandCinequation(i),weget
15(x1) + 9(y2) 10(z3) = 0.......(iv)
Nowthecoordinatesofthepoint(0,-3,1)
satisfytheequationoftheplane(iv)as
15(01) + 9(−32)−10(13)
=15 45 +20 =0
Hencethepoint(0,–3,1)containsintheplane.
Options:
A.3x2+10x 13 =0
B.3x210x +21 =0
C.3x210x +7=0
D.3x2+10x 7=0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question251
Iftheshortestdistancebetweenthelinesx1
α=y+1
1=z
1, (α 1)and
x+y+z+1=0=2x y+z+3is 1
3,thenavalueαis:
[OnlineApril10,2015]
Options:
A.16
19
B.19
16
C.32
19
D.19
32
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
|3+412λ +13|= | 9+012 +13|
| 12λ +20 |=|8| 5| = 2
2+25 30λ =4230λ +21 =0
210λ +7=0
Planepassingthroughx+y+z+1=0and2x y+z+3=0isx+y+z+1+λ(2x y+z+3) = 0
( +1)x+ (1λ)y+ (1+λ)z+ +1=0
Paralleltothegivenlineif
α( +1) 1(1λ) + 1(1+λ) = 0
α=
+1.......(i)
Also, +1 (1λ) + 0+ +1
( +1)2+ (1λ)2+ (1+λ)2 = 1
3
λ=0,32
102 ;α=0orα=32
19
||
Question252
Theanglebetweenthelineswhosedirectioncosinessatisfythe
equationsl +m+n=0andl 2+m2+n2is
[2014]
Options:
A.π
6
B.π
2
C.π
3
D.π
4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question253
LetA(2,3,5), B(−1,3,2)andC(λ,5,µ)betheverticesofaΔABC.Ifthe
medianthroughAisequallyinclinedtothecoordinateaxes,then:
[OnlineApril11,2014]
Options:
A.5λ =0
B.8λ =0
C.10λ =0
Given,l+m+n=0andl2=m2+n2
Now,(−mn)2=m2+n2
mn =0m=0orn=0
Ifm=0thenl= n
Weknowl2+m2+n2=1n= ± 1
2
i.e.(l1,m1,n1) = 1
2,0,1
2
Ifn=0thenl= m
l2+m2+n2=1⇒2m2=1
m= ± 1
2
Letm=1
2
l= 1
2andn=0
(l2,m2,n2) = 1
2,1
2,0
cos θ =1
2θ=π
3
( )
( )
D.7λ 10µ =0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question254
Alineinthe3-dimensionalspacemakesanangleθ 0 <θπ
2with
boththexandyaxes.Thenthesetofallvaluesofthetaistheinterval:
[OnlineApril9,2014]
Options:
A. 0,π
4
B. π
6,π
3
C. π
4,π
2
D. π
4,π
2
Answer:C
( )
( ]
[ ]
[ ]
( ]
IfDbethemid-pointofBC,then
D=λ1
2,4,µ+2
2
DirectionratiosofADareλ5
2,1,µ8
2
SincemedianADisequallyinclinedwithcoordinateaxes,thereforedirectionratiosofADwillbeequal,i.e,
λ5
2
2
λ5
2
2+1+µ8
2
2 = 1
λ5
2
2+1+µ8
2
2
=
µ8
2
2
λ5
2
2+1+µ8
2
2
λ5
2
2=1 = µ8
2
2
λ=7,3andµ=10,6
Ifλ=7andµ=10
Thenλ
µ=7
10 10λ =0
( )
( )
( ) ( ) ( ) ( )
( )
( ) ( )
( ) ( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question255
Equationofthelineoftheshortestdistancebetweenthelinesx
1=y
1=z
1
andx1
0=y+1
2=z
1is:
[OnlineApril19,2014]
Options:
A.x
1=y
1=z
2
B.x1
1=y+1
1=z
2
C.x1
1=y+1
1=z
1
D. x
2=y
1=z
2
Answer:B
Solution:
Solution:
Itmakesθwithxandy-axes.
l=cos θ,m=cos θ,n=cos(π)
wehavel2+m2+n2=1
cos2θ+cos2θ+cos2(π) = 1
2cos2θ+ (−cos 2 θ)2=1
2cos2θ1+cos2 =0
cos 2 θ [1+cos 2 θ] = 0
cos 2 θ =0orcos 2 θ = 1
=π2or =π
θ=π4orθ=π
2
θ=π
4,π
2
[ ]
Letequationoftherequiredlinebe
xx1
a=yy1
b=zz1
c......(i)
Giventwolines
x
1=y
1=z
1.......(ii)
andx1
0=y+1
0=z
1......(iii)
Sincetheline(i)isperpendiculartoboththelines(ii)and(iii),therefore
ab+c=0......(iv)
2b +c=0.....(v)
From(iv)and(v)c=2banda+b=0,whicharenotsatisfybyoptions(c)and(d).Henceoptions(c)and(d)are
rejected.
Thuspoint(x1,y1,z1)ontherequiredlinewillbeeither(0,0,0)or(1,-1,0).
Nowfootoftheperpendicularfrompoint(0,0,0)totheline(iii) = (1, 2r 1,r)
-------------------------------------------------------------------------------------------------
Question256
Theimageofthelinex1
3=y3
1=z4
5intheplane2x y+z+3=0isthe
line:
[2014]
Options:
A.x3
3=y+5
1=z2
5
B.x3
3=y+5
1=z2
5
C.x+3
3=y5
1=z2
5
D.x+3
3=y5
1=z+2
5
Answer:C
Solution:
Solution:
Thedirectionratiosofthelinejoiningthepoints(0,0,0)and(1, 2r 1,r)are1, 2r 1,r
Sincesumofthexandy-coordinateofdirectionratiooftherequiredlineis0.
12r 1=0, r=0
Hencedirectionratioare1,-1,0
Butthez-directionratiooftherequiredlineistwicethey-directionratiooftherequiredline
i.e.0=2(−1),whichisnottrue.
Hencetheshortestlinedoesnotpassthroughthepoint(0,0,0).Thereforeoption(a)isalsorejected.
a1
2=b3
1=c4
1=λ(let)
a= +1
b=3λ
c=4+λ
P=a+1
2,b+3
2,c+4
2 = λ+1,6λ
2,λ+8
2
2(λ+1) 6λ
2+λ+8
2+3=0
+6=0λ= 2
a= 3,b=5,c=2
Requiredlineisx+3
3=y5
1=z2
5
( ) ( )
-------------------------------------------------------------------------------------------------
Question257
Iftheanglebetweentheline2(x+1) = y=z+4andtheplane
2x y+ λz+4=0isπ
6,thenthevalueofλis:
[OnlineApril19,2014]
Options:
A.135
7
B.45
11
C.45
7
D.135
11
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question258
Ifthedistancebetweenplanes,4x 2y 4z +1=0and
4x 2y 4z +d=0is7,thend is:
[OnlineApril12,2014]
Options:
A.41or-42
B.42or-43
C.-41or43
D.-42or44
Givenequationoflinecanbewrittenas
x+1
1=y
2=z+4
2
Eqnofplaneis2x y+ λz +4=0
Since,anglebetweenthelineandtheplaneisπ
6
therefore
sin π
6=2(1) + 2(−1) + 2(√λ)
1+4+44+1+λ
1
2=22+2λ
95+λ
λ
5+λ=3
4⇒ λ
5+λ=9
16
=45 λ=45
7
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question259
Asymmetricalformofthelineofintersectionoftheplanesx =ay +b
andz =cy +d is
[OnlineApril12,2014]
Options:
A.xb
a=y1
1=zd
c
B.xba
a=y1
1=zdc
c
C.xa
b=y0
1=zc
d
D.xba
b=y1
0=zdc
d
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question260
Theplanecontainingthelinex1
1=y2
2=z3
3andparalleltotheline
x
1=y
1=z
4passesthroughthepoint:
Givenplanesare
4x 2y 4z +1=0
and4x 2y 4z +d=0
Theyareparallel.
Distancebetweenthemis±7=d1
16 +4+16
d1
6= ±7d=42 +1
or−42 +1i.e.d= 41or43.
Giventwoplanes:
xay b=0andcy z+d=0
Let,l,m,nbethedirectionratiooftherequiredline.Sincetherequiredlineisperpendiculartonormalofboththeplane,
thereforelam =0andcm n=0
lam +0.n=0and0.l+cm n=0
l
a0=m
0+1=n
c0
Hence,d.Roftherequiredlinearea,1,c.
Hence,options(c)and(d)arerejected.
Now,thepoint(a+b,1,c+d)satisfytheequationofthetwogivenplanes.
∴Option(b)iscorrect.
[OnlineApril11,2014]
Options:
A.(1,-2,5)
B.(1,0,5)
C.(0,3,-5)
D.(-1,-3,0)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question261
Equationoftheplanewhichpassesthroughthepointofintersectionof
linesx1
3=y2
1=z3
2andx3
1=y1
2=z2
3andhasthelargestdistance
fromtheoriginis:
[OnlineApril9,2014]
Options:
A.7x +2y +4z =54
B.3x +4y +5z =49
C.4x +3y +5z =50
D.5x +4y +3z =57
Answer:C
Equationoftheplanecontainingtheline
x1
1=y2
2=z3
3is
a(x1) + b(y2) + c(z3) = 0......(i)
wherea.1+b.2 +c.3 =0
i.e.,a+2b +3c =0........(ii)
Sincetheplane(i)paralleltotheline
x
1=y
1=z
4
a.1+b.1+c.4=0
i.e.,a+b+4c =0......(iii)
From(ii)and(iii),
a
83=b
34=c
12=k(let)
a=5k,b= k,c= k
Onputtingthevalueofa,bandcinequation(i),
5(x1) (y2) (z3) = 0
5x yz=0........(iv)
whenx=1,y=0andz=5;then
L.H.S.ofequation(iv) = 5x y2
=5×105=0
=R.H.S.ofequation
Hencecoordinatesofthepoint(1,0,5)satisfytheequationplanerepresentedbyequations(iv),
Thereforetheplanepassesthroughthepoint(1,0,5)
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question262
LetABCbeatrianglewithverticesatpointsA(2,3,5),B(−1,3,2)and
C(λ,5,µ)inthreedimensionalspace.IfthemedianthroughAisequally
inclinedwiththeaxes,then(λ,µ)isequalto:
[OnlineApril25,2013]
Options:
A.(10,7)
B.(7,5)
C.(7,10)
D.(5,7)
Answer:C
Solution:
Solution:
Givenequationoflinesare
x1
3=y2
1=z3
2.........(1)
andx3
1=y1
2=z2
3......(2)
Anypointonline(1)isP( +1,λ+2, +3)andonline(2)isQ(µ+3, +1, +2)
Onsolving +1=µ+3andλ+2= +1
wegetλ=1,µ=1
∴PointofintersectionoftwolinesisR(4,3,5)
So,equationofplane⊥toORwhereOis(0,0,0)andpassingthroughRis
4x +3y +5z =50
SinceADisthemedian
D=λ1
2,4,µ+2
2
Now,d R'sofADis
a=λ1
22=λ5
2
b=43=1,c=µ+2
25=µ8
2
Also,a,b,caredR's
a=kl ,b=km,c=knwherel=m=n
( )
( )
-------------------------------------------------------------------------------------------------
Question263
Iftheprotectionsofalinesegmentonthex,yandz-axesin3-
dimensionalspaceare2,3and6respectively,thenthelengthofthe
linesegmentis:
[OnlineApril23,2013]
Options:
A.12
B.7
C.9
D.6
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question264
Theacuteanglebetweentwolinessuchthatthedirectioncosines
l,m,n,ofeachofthemsatisfytheequationsl +m+n=0and
l2+m2n2=0is
[OnlineApril22,2013]
Options:
A.15°
B.30°
C.60°
D.45°
Answer:C
Solution:
Solution:
andl2+m2+n2=1
l=m=n=1
3
Now,a=1,b=1andc=1
λ=7andµ=10
Lengthofthelinesegment = (2)2+ (3)2+ (6)2=7
Letl1,m1,n1andl2,m2,n2bethed.cofline1and2respectively,thenasgiven
-------------------------------------------------------------------------------------------------
Question265
Ifthelinesx2
1=y3
1=z4
kandx1
k=y4
2=z5
1arecoplanar,thenkcan
have
[2013]
Options:
A.anyvalue
B.exactlyonevalue
C.exactlytwovalues
D.exactlythreevalues
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question266
IftwolinesL1andL2inspace,aredefinedbyL1= { x= λy+ (√λ1),
l1+m1+n1=0
andl2+m2+n2=0
andl1
2+m1
2n1
2=0and
l2
2+m2
2n2
2=0
( l+m+n=0andl2+m2n2=0)
Anglebetweenlines,θis
cos theta =l1l2+m1m2+n1n2.....(1)
Asgivenl2+m2=n2andl+m= n
⇒(n)22l m =n22l m =0orl m =0
Sol1m1=0,l2m2=0
Ifl1=0,m10thenl1m2=0
Ifm1=0,l10thenl2m1=0
Ifl2=0,m20thenl2m1=0
Ifm2=0,l20thenl1m2=0
Alsol1l2=0andm1m2=0
l2+m2n2=l2+m2+n22n2=0
12n2=0n= ± 1
2
n1= ± 1
2,n2= ± 1
2
cos θ =1
2θ=60°(acuteangle)
Givenlineswillbecoplanar
If
11 1
1 1 k
k 2 1
=0
⇒−1(1+2k) (1+k2)+1(2k) = 0
k=0, 3
| |
z= (√λ1)y+ λ}andL2= { x= µy+ (1 µ),z = (1 µ)y+ µ}
thenL1isperpendiculartoL2,forallnon-negativerealsλandµ,such
that:
[OnlineApril23,2013]
Options:
A.λ+ µ=1
B.λ µ
C.λ +µ=0
D.λ =µ
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question267
Ifthelinesx+1
2=y1
1=z+1
3andx+2
2=yk
3=z
4arecoplanar,thenthevalue
ofkis:
[OnlineApril9,2013]
Options:
A.11
2
B.11
2
C.9
2
D.9
2
Answer:A
ForL1,
x= λy + (√λ1)y=x (√λ1)
λ.......(i)
z= (√λ1)y+ λy=z λ
λ1.......(ii)
From(i)and(ii)
x (√λ1)
λ=y0
1=z λ
λ1.......(A)
Theequation(A)istheequationoflineL1.
SimilarlyequationoflineL2is
x (1 µ)
µ=y0
1=z µ
1 µ......(B)
SinceL1L2,therefore
λµ+1×1+ (√λ1)(1 µ) = 0
λ+ µ=0 λ= µ
λ=µ
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question268
Distancebetweentwoparallelplanes2x +y+2z =8and
4x +2y +4z +5=0is
[2013]
Options:
A.3
2
B.5
2
C.7
2
D.9
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question269
Theequationofaplanethroughthelineofintersectionoftheplanes
x+2y =3,y2z +1=0,andperpendiculartothefirstplaneis:
[OnlineApril25,2013]
Options:
Twogivenplanesarecoplanar,if
2 (−1)k1 0 (−1)
2 1 3
2 3 4
= 0
1 k 1 1
2 1 3
2 3 4
=0
⇒(1)(49) (k1)(86)+62=0
k=11
2
| |
| |
2x +y+2z 8=0....(Plane1)
2x +y+2z +5
2=0....(Plane2)DistancebetweenPlane1and2
=
85
2
22+12+22= 21
6=7
2
||| |
A.2x y10z =9
B.2x y+7z =11
C.2x y+10z =11
D.2x y9z =10
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question270
LetQbethefootofperpendicularfromtheorigintotheplane
4x 3y +z+13 =0andRbeapoint(-1,-6)ontheplane.Thenlength
QRis:
[OnlineApril22,2013]
Options:
A.14
B. 19
2
C.3 7
2
D. 3
2
Answer:C
Solution:
Solution:
Equationofaplanethroughthelineofintersectionoftheplanes
x+2y =3,y2z +1=0is
(x+2y 3) + λ(y2z +1) = 0
x+ (2+λ)y(z) 3+λ=0.......(i)
Now,plane(i)is⊥tox+2y =3
∴Theirdotproductiszero
i.e.1+2(2+λ) = 0λ= 5
2
Thus,requiredplaneis
x+25
2y2×5
2(z) 35
2=0
xy
2+5z 11
2=0
2x y+10z 11 =0
( )
LetPbetheimageofOinthegivenplane.
-------------------------------------------------------------------------------------------------
Question271
Avector
nisinclinedtox-axisat45°,toy-axisat60°andatanacute
angletoz-axis.If
nisanormaltoaplanepassingthroughthepoint
(√2, 1,1)thentheequationoftheplaneis:
[OnlineApril9,2013]
Options:
A.42x+7y +z2
B.2x +y+2z =22+1
C.32x4y 3z =7
D.2xyz=2
Answer:B
Solution:
Solution:
Equationoftheplane,4x 3y +z+13 =0
OPisnormaltotheplane,thereforedirectionratioofOPareproportionalto4,-3,1
SinceOPpassesthrough(0,0,0)andhasdirectionratioproportionalto4, 3,1.ThereforeequationofOPis
x0
4=y0
3=z0
1=r(let)
x=4r,y= 3r,z=r
LetthecoordinateofPbe(4r, 3r,r)
SinceQbethemidpointofOP
Q=2r, 3
2r,r
2
SinceQliesinthegivenplane
4x 3y +z+13 =0
8r +9
2r+r
2+13 =0
r=13
8+9
2+1
2
=26
26 = 1
Q= 2,3
2, 1
2
QR =(−1+2)2+13
2
2+ 6+1
2
2
=1+1
4+121
4=37
2
( )
( )
( ) ( )
Directioncosinesof
nare1
2,1
4,1
2.
Equationoftheplane,
-------------------------------------------------------------------------------------------------
Question272
Ifthelinex1
2=y+1
3=z1
4andx3
1=yk
2=z
1intersect,thenkisequalto:
[2012]
Options:
A.-1
B.2
9
C.9
2
D.0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question273
Thedistanceofthepoint^
i+2^
j+6^
kfromthestraightlinethatpasses
throughthepoint2^
i+3^
j4^
kandisparalleltothevector6^
i+3^
j4^
kis
[OnlineMay26,2012]
Options:
1
2(x 2) + 1
4(y+1) + 1
2(z1) = 0
2(x 2) + (y+1) + 2(z1) = 0
2x +y+2z =221+2
2x +y+2z =22+1
Givenlinesarex1
2=y+1
3=z1
4
andx3
1=yk
2=z
1
a1=^
i^
j+^
k,
b1 = 2^
i+3^
j+4^
k
a2=3^
i+k^
j,
b2=^
i+2^
j+^
k
Givenliesareintersectif
a2
a1.
b1×
b2
b1
b2
=0
a2
a1.
b1×
b2=0
2k+11
2 3 4
1 2 1
=0
2(38) (k+1)(24) 1(43) = 0
2(−5) (k+1)(−2) 1(1) = 0
⇒−10 +2k +21=0k=9
2
( ) ( )
| | | |
( ) ( )
| |
A.9
B.8
C.7
D.10
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question274
Statement1:Theshortestdistancebetweenthelinesx
2=y
1=z
2and
x1
4=y1
2=z1
4is2.
Statement2:Theshortestdistancebetweentwoparallellinesisthe
perpendiculardistancefromanypointononeofthelinestotheother
line.
[OnlineMay19,2012]
Options:
A.Statement1istrue,Statement2isfalse.
B.Statement1istrue,Statement2istrue,Statement2isacorrectexplanationforStatement
1.
C.Statement1isfalse,Statement2istrue.
D.Statement1istrue,Statement2istrue,,Statement2isnotacorrectexplanationfor
Statement1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Pointis(–1,2,6)
Linepassesthroughthepoint(2,3,–4)paralleltovectorwhosedirectionratiosis6,3,–4.
Equationisx2
6=y3
3=z+4
4=λ
Anypointonthislineisgivenbyx= +2,y= +3,z= 4
Now,d.Rsoflinepassingthrough(-1,2,6)and⊥tothislineis{(x+1), (y2), (z6)}
So,6(x+1) + 3(y2) 4(z6) = 0
6x +3y 4z +24 =0
Now,6( +2) + 3( +3)+4( +4) + 24 =0
61λ +61 =0λ= 1
So,x= 4,y=0,z=0
Now,distancebetween(-1,2,6)and(-4,0,0)is√9+4+36 = 49 =7
Onsolvingwewillgetshortestdistance≠2
Question275
Thecoordinatesofthefootofperpendicularfromthepoint(1,0,0)to
thelinex1
2=y+1
3=z+10
8are
[OnlineMay12,2012]
Options:
A.(2,–3,8)
B.(1,–1,–10)
C.(5,–8,–4)
D.(3,–4,–2)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question276
Aequationofaplaneparalleltotheplanex 2y +2z 5=0andata
unitdistancefromtheoriginis:
[2012]
Options:
A.x 2y +2z 3=0
B.x 2y +2z +1=0
C.x 2y +2z 1=0
D.x 2y +2z +5=0
LettheequationofABis
x1
2=y (−1)
3=z (−10)
8=k
LetLbethefootoftheperpendiculardrawnfromP(1,0,0)
Now,directionratioofPL = (2k, 3k 1,8k 10)anddirectionratioofAB = (2, 3,8)
Since,PLisperpendiculartoAB
2(2k) 3(−3k 1)+8(8k 10) = 0
Now,k=2(11) + (−3)(0+1) + 8(0+10)
(2)2+ (−3)2+ (8)2
=03+80
4+9+64 =77
77 =1
∴Requiredco-ordinate = L= (2+1, 31,810)
= (3, 4, 2)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question277
Theequationofaplanecontainingthelinex+1
3=y3
2=z+2
1andthepoint
(0,7,-7)is
[OnlineMay26,2012]
Options:
A.x +y+z=0
B.x +2y +z=21
C.3x 2y +5z +35 =0
D.3x +2y +5z +21 =0
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question278
Considerthefollowingplanes
P:x+y2z +7=0
Q:x+y+2z +2=0
R:3x +3y 6z 11 =0
Giventhat,equationofaplaneis
x2y +2z 5=0
So,Equationofparallelplaneis
x2y +2z +d=0
Now,itisgiventhatdistancefromorigintotheparallelplaneis1.
d
12+22+22=1d= ±3
Soequationofrequiredplanex2y +2z ±3=0
||
Theequationoftheplanecontainingtheline
x+1
3=y3
2=z+2
1isa(x+1) + b(y3) + c(z+2) = 0
where−3a +2b +c=0.......(A)
Thispassesthrough(0,7,-7)
a(0+1) + b(73) + c(−7+2) = 0
a+4b 5c =0.......(B)
Onsolvingequation(A)and(B)weget
a=1,b=1,c=1
∴Requiredplaneis
x+1+y3+z+2=0
x+y+z=0
[OnlineMay26,2012]
Options:
A.PandRareperpendicular
B.QandRareperpendicular
C.PandQareparallel
D.PandRareparallel
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question279
Ifthethreeplanesx =5,2x 5ay +3z 2=0and3bx +y3z =0
containacommonline,then(a,b)isequalto
[OnlineMay19,2012]
Options:
A. 8
15, 1
5
B. 1
5, 8
15
C. 8
15,1
5
D. 1
5,8
15
Answer:B
Solution:
Solution:
( )
( )
( )
( )
Givenplanesare
P:x+y2z +7=0
Q:x+y+2z +2=0
andR:3x +3y 6z 11 =0
ConsiderPlanePandR.
Herea1=1,b1=1,c1= 2
anda2=3,b2=3,c2= 6
Since,a1
a2
=b1
b2
=c1
c2
=1
3
thereforePandRareparallel.
Letthedirectionratiosofthecommonlinebel,mandn.
l×1+m×0+n×0=0⇒l=0
2l 5ma +3n =05ma 3n =0
3l b +m3n =0m3n =0........(3)
Subtracting(3)from(1),wegetm(5a 1) = 0
-------------------------------------------------------------------------------------------------
Question280
Alinewithpositivedirectioncosinespassesthroughthepoint
P(2, 1,2)andmakesequalangleswiththecoordinateaxes.Iftheline
meetstheplane2x +y+z=9atpointQ,thenthelengthPQequals
[OnlineMay7,2012]
Options:
A.2
B.2
C.3
D.1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question281
Thevaluesofaforwhichthetwopoints(1,a,1)and(−3,0,a)lieonthe
oppositesidesoftheplane3x +4y12z +13 =0,satisfy
[OnlineMay7,2012]
Options:
A.0 <a<1
3
B.1<a<0
Now,valueofmcannotbezerobecauseifm=0thenn=0
l=m=n=0whichisnotpossible.
Hence,5a 1=0a=1
5
Thus,option(b)iscorrect.
PointPis(2,-1,2)
LetthislinemeetatQ(h,k,w)
Directionratioofthislineis
(h2,k+1,w2)
Since,d csareequal&d rsarealsoequal,
So,h2=k+1+w2
k=h3andw=h
Thislinemeetstheplane
2x +y+z=9atQ,so,
2h +k+w=9or2h +h3+h=9
4h 3=9h=3
andk=0andw=3
DistancePQ = (32)2+ (0 (−1))2+ (32)2
=12+12+12= 3
C.a < 1ora <1
3
D.a =0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question282
Thelengthoftheperpendiculardrawnfromthepoint(3,-1,11)tothe
linex
2=y2
3=z3
4is:
[2011RS]
Options:
A.29
B.33
C.53
D.66
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question283
Statement-1:ThepointA(1,0,7) )isthemirrorimageofthepoint
Givenequationofplaneis
3x +4y 12z +13 =0
(1,a,1)and(−3,0,a)satisfytheequationofplane.
∴Wehave
3+4(a) 12 +13 =0and3(−3) 12(a) + 13 =0
4+4a =0and412a =0
a= 1anda=1
3
Since,(1,a,1)and(−3,0,a)lieontheoppositesidesoftheplane∴a=0
Anypointonlinex
2=y2
3=z3
4=αis(, +2, +3)
⇒Directionratioofthe⊥lineis
3, +3, 8.
andDirectionratioofthegivenlineare2,3,4
2( 3) + 3( +3) + 4( 8) = 0
29α 29 =0
α=1
⇒Footof⊥is(2,5,7)
⇒Length⊥is 12+62+42= 53
B(1,6,3)intheline:x
1=y1
2=z2
3
Statement-2:Thelinex
1=y1
2=z2
3bisectsthelinesegmentjoining
A(1,0,7)andB(1,6,3).
[2011]
Options:
A.Statement-1istrue,Statement-2istrue;Statement-2isnotacorrectexplanationfor
Statement-1.
B.Statement-1istrue,Statement-2isfalse.
C.Statement-1isfalse,Statement-2istrue.
D.Statement-1istrue,Statement-2istrue;Statement-2isacorrectexplanationforStatement-
1.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question284
Thedistanceofthepoint(1,-5,9)fromtheplanex y+z =5measured
alongastraightx =y=zis
[2011RS]
Options:
A.103
B.53
C.310
D.35
Answer:A
Solution:
Solution:
ThedirectionratioofthelinesegmentABis0,6,-4andthedirectionratioofthegivenlineis1,2,3.
Clearly1 times 0 +2×6+3× (−4) = 0
So,thegivenlineisperpendiculartolineAB.
Also,themidpointofAandBis(1,3,5)whichsatisfythegivenline.
So,theimageofBinthegivenlineisAstatement-1and2bothtruebut2isnotcorrectexplanation.of1.
EquationoflinethroughP(1, 5,9)andparalleltothelinex=y=zis
x1
1=y+5
1=z9
1=λ(say)
Q= (x=1+λ,y= 5+λ,z=9+λ)
SinceQliesonplanexy+z=5
1+λ+5λ+9+λ=5
λ= 10
-------------------------------------------------------------------------------------------------
Question285
Iftheanglebetweenthelinex =y1
2=z3
λandtheplanex +2y +3z =4
iscos15
14 ,thenλequals
[2011]
Options:
A.3
2
B.2
5
C.5
3
D.2
3
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question286
AlineABinthree-dimensionalspacemakesangles45°and120°with
thepositivex-axisandthepositivey-axisrespectively.IfABmakesan
acuteangleθwiththepositivez-axis,thenθequals
[2010]
Options:
A.45°
()
Q= (−9, 15, 1)
PQ = (1+9)2+ (15 5)2+ (9+1)2
= 300 =103
Letθbetheanglebetweenthegivenlineandplane,then
sin θ =1×1+2×2+λ×3
12+22+λ2.12+22+32 = 5+
14 .5+λ2
cos θ =1(5+)2
14(5+λ2)
5
14 =1(5+)2
14(5+λ2)
Squaringbothsides,weget
5
14 =230λ +45
14(5+λ2)
λ=2
3
B.60°
C.75°
D.30°
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question287
ThelineLgivenbyx
5+y
b=1passesthroughthepoint(13,32).Theline
K isparalleltoLandhastheequationx
c+y
3=1.Thenthedistance
betweenLandK is
[2010]
Options:
A.17
B. 17
15
C. 23
17
D. 23
15
Answer:C
Solution:
Solution:
Asperquestion,directioncosinesoftheline:l=cos 45° = 1
2,m=cos 120° = 1
2,n=cos θ
wherethetaistheangle,whichlinemakeswithpositivez-axis.
Weknowthat,l2+m2+n2=1
1
2+1
4+cos2θ=1
cos2θ=1
4
cos θ =1
2=cos π
2( θbeingacute)
θ=π
3
SlopeoflineL= b
5
SlopeoflineK= 3
c
LineLisparalleltolinek.
b
5=3
cbc =15
(13,32)isapointonL.
13
5+32
b=132
b= 8
5
-------------------------------------------------------------------------------------------------
Question288
Statement-1:ThepointA(3,1,6)isthemirrorimageofthepointB(1,
3,4)intheplanex–y+z=5.
Statement-2:Theplanex–y+z=5bisectsthelinesegmentjoining
A(3,1,6)andB(1,3,4).
[2010]
Options:
A.Statement-1istrue,Statement-2istrue;Statement-2isnotacorrectexplanationfor
Statement-1.
B.Statement-1istrue,Statement-2isfalse.
C.Statement-1isfalse,Statement-2istrue.
D.Statement-1istrue,Statement2istrue;Statement-2isacorrectexplanationfor
Statement-1.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question289
Theprojectionsofavectoronthethreecoordinateaxisare6,-3,2
respectively.Thedirectioncosinesofthevectorare
[2009]
Options:
A.6
5,3
5,2
5
B.6
7,3
7,2
7
b= 20 c= 3
4
EquationofK:
y4x =34x y+3=0
DistancebetweenLandK=|52 32 +3|
17 =23
17
A(3,1,6); B= (1,3,4)
Puttingcoordinateofmid-pointofAB = (2,2,5)inplanexy+z=5then22+5=5,satisfy
So,mid-pointofAB = (2,2,5)liesontheplane.
d.r'sofAB = (2, 2,2)
d.r'sofnormaltoplane = (1, 1,1)
DirectionratioofABandnormaltotheplaneareproportionaltherefore,
ABisperpendiculartothenormalofplane
∴AisimageofB
Statement-1iscorrect.
Statement-2isalsocorrectbutitisnotcorrectexplanation.
C.6
7,3
7,2
7
D.6, 3,2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question290
Letthelinex2
3=y1
5=z+2
2lieintheplanex +3y αz +β=0.Then
(α,β)equals
[2009]
Options:
A.(-6,7)
B.(5,-15)
C.(-5,5)
D.(6,-17)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question291
Ifthestraightlinesx1
k=y2
2=z3
3andx2
3=y3
k=z1
2intersectata
point,thentheintegerkisequalto
LetP(x1,y1,z1)andQ(x2,y2,z2)betheinitialandfinalpointsofthevectorwhoseprojectionsonthethreecoordinate
axesare6,-3,2then
x2x1, = 6;y2y1= 3;z2z1=2
Sothatdirectionratiosof
PQare6,-3,2
∴Directioncosinesof
PQare 6
62+ (−3)2+22,3
62+ (−3)2+222
62+ (−3)2+22=6
7,3
7,2
7
Giventhat,thelinex2
3=y1
5=z+2
2lieintheplanex+3y αz +β=0
Pt(2,1, 2)liesontheplane
i.e.2+3+ +β=0
or +β+5=0.......(i)
Alsonormaltoplanewillbeperpendiculartoline,
3×15×3+2× (−α) = 0
α= 6
Fromequation(i)then,β=7
(α,β) = (−6,7)
[2008]
Options:
A.-5
B.5
C.2
D.-2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question292
Thelinepassingthroughthepoints(5,1,a)and(3,b,1)crossestheyz-
planeatthepoint 0,17
2,13
2.Then
[2008]
Options:
A.a =2,b=8
B.a =4,b=6
C.a =6,b=4
D.a =8,b=2
Answer:C
Solution:
( )
henthetwolinesintersectthenshortestdistancebetweenthemiszeroi.e.
a2
a1.
b1×
b2
b1×
b2
=0
a2
a1.
b1×
b2=0
where
a1=^
i+2^
j+3^
k,
b1=k^
i+2^
j+3^
k
a2=2^
i+3^
j+^
k,
b2=3^
i+k^
j+2^
k
112
k 2 3
3 k 2
=0
1(43k) 1(2k 9)−2(k26) = 0
⇒−2k25k +25 =0k= 5or5
2
kisaninteger,thereforek= 5
( )
| |
( )
| |
-------------------------------------------------------------------------------------------------
Question293
Ifalinemakesanangleofπ 4withthepositivedirectionsofeachofx
-axisandy-axis,thentheanglethatthelinemakeswiththepositive
directionofthez-axisis
[2007]
Options:
A.π
4
B.π
2
C.π
6
D.π
3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question294
Equationoflinethrough(5,1,a)and(3,b,1)isx5
2=y1
b1=za
1a=λ
x= +5
y= (b1)λ+1
z= (1a)λ+a
∴Anypointonthislineisa
[− +5, (b1)λ+1, (1a)λ+a]
Giventhatitcrossesyzplane∴ +5=0
λ=5
2
0, (b1)5
2+1, (1a)5
2+a = 0,17
2,13
2
(b1)5
2+1=17
2
and(1a)5
2+a= 13
2
b=4anda=6
( ) ( )
Letthelinemakesananglethetawiththepositivedirectionofz-axis.Giventhatlinesmakesangleπ
4withxaxisandy-
axis.
l=cos π
4,m=cos π
4,n=cos θ
Weknowthat,l2+m2+n2=1
cos2π
4+cos2π
4+cos2θ=1
1
2+1
2+cos2θ=1
cos2θ=0θ=π
2
Hence,anglewithpositivedirectionofthez-axisisπ
2.
LetLbethelineofintersectionoftheplanes2x +3y +z=1and
x+3y +2z =2.IfLmakesanangleαwiththepositivex-axis,thencos α
equals
[2007]
Options:
A.1
B. 1
2
C. 1
3
D.1
2.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question295
TOPIC4-SphereandMiscellaneousProblemsonSphere
If(2,3,5)isoneendofadiameterofthespherex2+y2+z2
6x 12y 2z +20 =0,thenthecooordinatesoftheotherendofthe
diameterare
[2007]
Options:
A.(4,3,5)
B.(4,3,-3)
C.(4,9,-3)
D.(4,-3,3)
LetthedirectioncosinesoflineLbel,m,n.Sinceline
Lliesonbothplanes.
2l +3m +n=0.......(i)
andl+3m +2n =0........(ii)
onsolvingequation(i)and(ii),weget
l
63=m
14=n
63l
3=m
3=n
3
Nowl
3=m
3=n
3 = l2+m2+n2
32+ (−3)2+32
l2+m2+n2=1
l
3=m
3=n
3=1
27
l=3
27 =1
3,m= 1
3,n=1
3
LineL,makesanangleαwith+vex-axis
l=cos α cos α =1
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question296
Theimageofthepoint(-1,3,4)intheplanex 2y =0is
[2006]
Options:
A. 17
3, 19
3,4
B.(15,11,4)
C. 17
3, 19
3,1
D.Noneofthese
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question297
Ifnonzeronumbersa,b,careinH.P.,thenthestraightlinex
a+y
b+1
c=0
alwayspassesthroughafixedpoint.Thatpointis
( )
( )
Weknowthatcentreofsphere
x2+y2+z2+2ux +2vy+2wz +d=0
is(−u, v, w)
Giventhat,x2+y2+z26x 12y 2z+20 =0
∴Centre (3,6,1)
Coordinatesofoneendofdiameterofthesphereare(2,3,5)
Letthecoordinatesoftheotherendofdiameterare(α,β,γ)
α+2
2=3,β+3
2=6,γ+5
2=1
α=4,β=9andγ= 3
∴Coordinateofotherendofdiameterare(4,9,-3)
Let(α,β,γ)betheimage,thenmidpointof( α,β,γ)and(-1,3,4)mustlieonx2y =0
α1
22β+3
2=0
α1 6=0α =7.......(1)
Alsolinejoining(α,β,γ)and(-1,3,4)shouldbeparalleltothenormaloftheplanex2y =0
α+1
1=β3
2=γ4
0=λ
α=λ1,β= +3,γ=4........(2)
From(1)and(2)
α=9
5,β= 13
5,γ=4
Noneoftheoptionmatches.
( )
[2005]
Options:
A.(-1,2)
B.(-1,-2)
C.(1,-2)
D. 1, 1
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question298
Theanglebetweenthelines2x =3y = zand6x = y= 4zis
[2005]
Options:
A.0°
B.90°
C.45°
D.30°
Answer:B
Solution:
Solution:
( )
a,b,careinH.P.⇒1
a,1
b,1
careinA.P.
2
b=1
a+1
c1
a2
b+1
c=0
x
a+y
a+1
c=0passesthrough(1,-2)
Thegivenlinesare2x =3y = z
orx
3=y
2=z
6Dividingby6]
and6x = y= 4z
orx
2=y
12 =z
3[Dividingby12]
∴Anglebetweentwolinesis
cos θ =a1a2+b1b2+c1c2
a1
2+b1
2+c1
2a2
2+b2
2+c2
2
cos θ =3.2 +2. (−12) + (−6) . (−3)
32+22+ (−6)222+ (−12)2+ (−3)2
=624 +1849157 = 0θ=90°
[
Question299
Thedistancebetweentheline
r=2^
i2^
j+3^
k+λ(ij+4k)andthe
plane
r.^
i+5^
j+^
k=5is
[2005]
Options:
A.10
9
B. 10
33
C. 3
10
D.10
3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question300
Iftheanglethetabetweenthelinex+1
1=y1
2=z2
2andtheplane
2x y+ λz+4=0issuchthatsin θ =1
3thenthevalueofλis
[2005]
Options:
A.5
3
B.3
5
C.3
4
D.4
3
Answer:A
( )
Thegivenlineis
r=2^
i2^
j+3^
k+λ(ij+4k)
andtheplaneis
r.^
i+5^
j+^
k=5
x+5y +z=5
Requireddistance= ax1+by1+cz1+d
a2+b2+c2
=210 +35
1+25 +1=10
33
( )
||
| |
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question301
Theplanex +2y z=4cutsthespherex2+y2+z2x+z 2=0ina
circleofradius
[2005]
Options:
A.3
B.1
C.2
D.2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question302
Letθistheanglebetweenlineandplanethen
sin θ =
b.
n
b
n
=
^
i+2^
j+2^
k.2^
i^
j+ λ^
k
1+4+44+1+λ = 22+2λ
3× 5+λ
sin θ =2λ
35+λ=1
3⇒ =5+λ
λ=5
3
| | | |
( ) ( )
Centreofsphere = 1
2,0, 1
2andradiusofsphere
=1
4+1
4+2=5
2
PerpendiculardistanceOAofcentrefromx+2y z=4isgivenby
1
2+1
24
6=3
2
∴radiusofcircleAB =OB2OA2 = 5
23
2=1
( )
| |
Iftheplane2ax 3ay +4az +6=0passesthroughthemidpointofthe
linejoiningthecentresofthespheresx2+y2+z2+6x8y 2z =13and
x2+y2+z210x+4y 2z =8thenaequals
[2005]
Options:
A.-1
B.1
C.-2
D.2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question303
Alinemakesthesameangleθ,witheachofthexandzaxis.Ifthe
angleβ,whichitmakeswithy-axis,issuchthatsin2β=3sin2θ,then
cos2θequals
[2004]
Options:
A.2
5
B.1
5
C.3
5
D.2
3
Answer:C
Solution:
Solution:
Plane2ax 3ay +4az +6=0passesthroughthemidpointofthelinejoiningthecentresofspheres
x2+y2+z2+6x 8y−2z =13and
x2+y2+z210x +4y−2z =8
respectivelycentreofspheresarec1(−3,4,1)andc2(5, 2,1).Midpointofc1c2is(1,1,1)
Satisfyingthisintheequationofplane,weget
2a 3a +4a +6=0
a= 2.
Asperquestionthedirectioncosinesofthelinearecos θ,cos β,cos θ
cos2θ+cos2β+cos2θ=1
2cos2θ=1cos2θ
-------------------------------------------------------------------------------------------------
Question304
Ifthestraightlinesx =1+s,y= 3λs,z=1+λsand
x=t
2,y=1+t,z=2t,withparameterssandtrespectively,areco-
planar,thenλequals.
[2004]
Options:
A.0
B.-1
C.1
2
D.-2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question305
Alinewithdirectioncosinesproportionalto2,1,2meetseachofthe
linesx =y+a=zandx +a=2y =2z.Theco-ordinatesofeachofthe
2cos2θ=sin2β=3sin2θ(given)
2cos2θ=33cos2θ
cos2θ=3
5
Thegivenlinesare
x1=y+3
λ=z1
λ=s......(1)
and2x =y1=z2
1=t.....(2)
Thelinesarecoplanar,if
01 1 (−3)21
1λλ
1
211
= 0
14 1
1λλ
1
211
=0
Applyc2c2+c3;
15 1
10λ
1
201
=0
⇒−51λ
2=0λ= 2
| |
| |
| |
( )
pointsofintersectionaregivenby
[2004]
Options:
A.(2a,3a,3a), (2a,a,a)
B.(3a,2a,3a), (a,a,a)
C.(3a,2a,3a), (a,a,2a)
D.(3a,3a,3a), (a,a,a)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question306
Distancebetweentwoparallelplanes2x +y+2z =8and
4x +2y +4z +5=0is
[2004]
Options:
A.9
2
B.5
2
C.7
2
D.3
2
Answer:C
Solution:
Solution:
Letapointonthelinex=y+a=z=λis
(λ,λa,λ)andapointontheline
x+a=2y =2z =µis µa,µ
2,µ
2,thenDirectionratioofthelinejoiningthesepointsare
λµ+a,λaµ
2,λµ
2
Ifitrespresentstherequiredlinewhosed.rbe2,1,2,then
λµ+a
2=
λaµ
2
1 =
λµ
2
2
onsolvingwegetλ=3a,µ=2a
∴Therequiredpointsofintersectionare
(3a,3a a,3a)and 2a a,2a
2,2a
2
or(3a,2a,3a)and(a,a,a)
( )
( )
Theplanesare2x +y+2z 8=0........(1)
-------------------------------------------------------------------------------------------------
Question307
Theintersectionofthespheresx2+y2+z2+7x 2y z=13and
x2+y2+z23x +3y +4z =8isthesameastheintersectionofoneof
thesphereandtheplane
[2004]
Options:
A.2x yz=1
B.x 2y z=1
C.x y2z =1
D.x yz=1
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question308
Thelinesx2
1=y3
1=z4
kandx1
k=y4
2=z5
1arecoplanarif
[2003]
Options:
A.k =3or-2
B.k =0or-1
C.k =1or-1
D.k =0or-3.
Answer:D
and4x +2y +4z +5=0
or2x +y+2z +5
2=0........(2)
Since,bothplanesareparallel
∴Distancebetween(1)and(2)
=
5
2+8
22+12+22= 21
29=7
2
||| |
Giventhat,theequationsofspheresare
S1:x2+y2+z2+7x 2y z−13 =0and
S2:x2+y2+z23x +3y+4z 8=0
Weknowthateqn.ofintersectionplanebe
S1S2=010x 5y 5z 5=0
2x yz=1
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question309
Thetwolinesx=ay+b,z=cy+dandx=a'y+b',z=c'y+d'willbe
perpendicular,ifandonlyif
[2003]
Options:
A.aa'+cc'+1=0
B.aa'+bb'+cc'+1=0
C.aa'+bb'+cc'=0
D.(a+a')(b+b')+(c+c')=0.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question310
Twosystemofrectangularaxeshavethesameorigin.Ifaplanecuts
thematdistancesa,b,canda′, b′, cfromtheoriginthen
[2003]
Twoplanesarecoplanarif
x2x1y2y1z2z1
l1m1n1
l2m2n2
= 0
111
1 1 k
k 2 1
=0
ApplyingC2C2+C1,C3C3+C1
1 0 0
121k
k k +2 1 +k
=0
1[2+2k (k+2)(1k)] = 0
2+2k (−k2k+2) = 0
k2+3k =0k(k+3) = 0
ork=0or-3
| |
| |
| |
xb
a=y
1=zd
c;xb
a = y
1=zd
c.
Forperpendicularityoflines,
aa + 1+cc = 0
Options:
A. 1
a2+1
b2+1
c21
a21
b21
c2=0
B. 1
a2+1
b2+1
c2+1
a2+1
b2+1
c2=0
C. 1
a2+1
b21
c2+1
a2+1
b21
c2=0
D. 1
a21
b21
c2+1
a21
b21
c2=0
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question311
Theradiusofthecircleinwhichthespherex2+y2+z2+2x 2y
4z 19 =0iscutbytheplanex +2y +2z +7=0is
[2003]
Options:
A.4
B.1
C.2
D.3
Answer:D
Solution:
Solution:
Equationofplanesininterceptformbex
a+y
b+z
c=1&x
a+y
b+z
c=1
( rdistanceonplanefromoriginissame.)
1
1
a2+1
b2+1
c2
= 1
1
a2+1
b2+1
c2
1
a2+1
b2+1
c21
a21
b2− 1
c2=0
|| | |
Centreofsphere = (−1,1,2)
Radiusofsphere√1+1+4+19 =5
Perpendiculardistancefromcentretotheplane
-------------------------------------------------------------------------------------------------
Question312
Theshortestdistancefromtheplane12x +4y +3z =327tothesphere
x2+y2+z2+4x 2y6z =155is
[2003]
Options:
A.39
B.26
C.11 4
13
D.13.
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question313
Thed.r.ofnormaltotheplanethrough(1,0,0),(0,1,0)whichmakesan
angleπ 4withplanex +y=3are
[2002]
Options:
A.1, 2,1
B.1,1, 2
C.1,1,2
D.2,1,1
Answer:B
Solution:
OC =d=1+2+4+7
1+4+4=12
3=4
Inright,ΔAOC
AC2=AO2OC2 = 5242=9
AC =3
| |
Centreofspherebe(-2,1,3)andradius13
Weknowthat,
Shortestdistance=perpendiculardistancebetweentheplaneandsphere=distanceofplanefromcentreofsphere-
radius
=2×12 +4×1+3×3327
144 +9+16 −13
=26 13 =13
| |
Solution:
-------------------------------------------------------------------------------------------------
Question314
Aplanewhichpassesthroughthepoint(3,2,0)andtheline
x4
1=y7
5=z4
4is
[2002]
Options:
A.x y+z=1
B.x +y+z=5
C.x +2y z=1
D.2x y+z=5
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Equationofplanethrough(1,0,0)is
a(x1) + by +cz =0.......(i)
Itisalsopassesthrough(0,1,0).
a+b=0b=a
cos 45° = a+a
2(2a2+c2)
2a =2a2+c22a2=c2⇒c= 2a
Sod.rofnormalarea,a√2ai.e.1,1, 2.
Sincethepoint(3,2,0)liesonthegivenline
x4
1=y7
5=z4
4
∴Therecanbeinfinitemanyplanespassingthroughthisline.Weobservedthatonlyoption(a)issatisfiedbythe
coordinatesofboththepoints(3,2,0)and(4,7,4)
xy+z=1istherequiredplane.