-------------------------------------------------------------------------------------------------
Question232
Aplanebisectsthelinesegmentjoiningthepoints(1,2,3)and(–3,4,
5)atrightangles.Thenthisplanealsopassesthroughthepoint.
[OnlineApril15,2018]
Options:
A.(–3,2,1)
B.(3,2,1)
C.(1,2,–3)
D.(–1,2,3)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question233
IftheimageofthepointP(1, −2,3)intheplane,2x +3y −4z +22 =0
measuredparalleltoline,x
1=y
4=z
5isQ,thenPQisequalto:
[2017]
Options:
A.6√5
B.3√5
C.2√42
Normalto5x +8y +2z = −14is5^
i+8^
j+2^
k
Thelineofintersectionoftheplanesisperpendiculartobothnormals,so,directionratiosoftheintersectionlineare
directlyproportionaltothecrossproductofthenormalvectors.
Thereforethedirectionratiosofthelineis−^
j+4^
k
Hencetheanglebetweentheplanex+y+z+5=0andtheintersectionlineissin−1−1+4
√17√3=sin−13
17
( ) (√)
Sincetheplanebisectsthelinejoiningthepoints(1,2,3)and(-3,4,5)thentheplanepassesthroughthemidpointofthe
linewhichis:
1−3
2,2+4
2,5+3
2≡−2
2,6
2,8
2≡(−1,3,4)
Asplanecutsthelinesegmentatrightangle,sothedirectioncosinesofthenormaloftheplaneare
(−3−1,4−2,5−3) = (−4,2,2)
Sotheequationoftheplaneis:−4x +2y +2z =λ
Asplanepassesthrough(-1,3,4)so
−4(−1) + 2(3) + 2(4) = λ⇒λ=18
Therefore,equationofplaneis:−4x +2y +2z =18
Now,only(-3,2,1)satisfiesthegivenplaneas
−4(−3) + 2(2) + 2(1) = 18
( ) ( )