StraightLinesandPairofStraightLines
Question1
Theportionoftheline4x+5y=20inthefirstquadrantistrisectedby
thelinesL1andL2passingthroughtheorigin.Thetangentofanangle
betweenthelinesL1andL2is:
[27-Jan-2024Shift1]
Options:
A.
8/5
B.
25/41
C.
2/5
D.
30/41
Answer:D
Solution:
Question2
LetRbetheinteriorregionbetweenthelines3x−y+1=0andx+2y
−5=0containingtheorigin.Thesetofallvaluesofa,forwhichthe
points(a2,a+1)lieinR,is:
[27-Jan-2024Shift2]
Options:
A.
B.
C.
D.
Answer:B
Solution:
-------------------------------------------------------------------------------------------------
Question3
LetAandBbetwofinitesetswithmandnelementsrespectively.The
totalnumberofsubsetsofthesetAis56morethanthetotalnumberof
subsetsofB.ThenthedistanceofthepointP(m,n)fromthepointQ(−2,
−3)is
[27-Jan-2024Shift2]
Options:
A.
10
B.
6
C.
4
D.
8
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question4
Ifthesumofsquaresofallrealvaluesofα,forwhichthelines2x−y+
3=0,6x+3y+1=0andαx+2y−2=0donotformatriangleisp,
thenthegreatestintegerlessthanorequaltopis........
[27-Jan-2024Shift2]
Answer:32
Solution:
-------------------------------------------------------------------------------------------------
Question5
Ina△ABC,supposey=xistheequationofthebisectoroftheangleB
andtheequationofthesideACis2x−y=2.If2AB=BCandthepoint
AandBarerespectively(4,6)and(α,β),thenα+2βisequalto
[29-Jan-2024Shift1]
Options:
A.
42
B.
39
C.
48
D.
45
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question6
Let(5,a/4),bethecircumcenterofatrianglewithverticesA(a,−2),
B(a,6)andC(a/4,-2).Letαdenotethecircumradius,βdenotethearea
andγdenotetheperimeterofthetriangle.Thenα+β+γis
[29-Jan-2024Shift1]
Options:
A.
60
B.
53
C.
62
D.
30
Answer:B
Solution:
Question7
Thedistanceofthepoint(2,3)fromtheline2x−3y+28=0,
measuredparalleltotheline√3x−y+1=0,isequalto
[29-Jan-2024Shift2]
Options:
A.
4√2
B.
6√3
C.
3+4√2
D.
4+6√3
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question8
LetAbethepointofintersectionofthelines3x+2y=14,5x−y=6
andBbethepointofintersectionofthelines4x+3y=8,6x+y=5.
ThedistanceofthepointP(5,−2)fromthelineABis
[29-Jan-2024Shift2]
Options:
A.
13/2
B.
8
C.
5/2
D.
6
Answer:D
Solution:
SolvinglinesL1(3x+2y=14)andL2(5x−y=6)togetA(2,4)andsolvinglinesL3(4x+3y=8)andL4(6x+y=5)to
getB(1/2,2).
-------------------------------------------------------------------------------------------------
Question9
AlinepassingthroughthepointA(9,0)makesanangleof30withthe
positivedirectionofx-axis.IfthislineisrotatedaboutAthroughan
angleof15intheclockwisedirection,thenitsequationinthenew
positionis
[30-Jan-2024Shift1]
Options:
A.
B.
C.
D.
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question10
Ifx2−y2+2hxy+2gx+2fy+c=0isthelocusofapoint,whichmoves
suchthatitisalwaysequidistantfromthelinesx+2y+7=0and2x−
y+8=0,thenthevalueofg+c+h−fequals
[30-Jan-2024Shift2]
Options:
A.
14
B.
6
C.
8
D.
29
Answer:A
Solution:
-------------------------------------------------------------------------------------------------
Question11
Letα,β,γ,δ∈ZandletA(α,β),B(1,0),C(γ,δ)andD(1,2)bethe
verticesofaparallelogramABCD.IfAB=√10andthepointsAandClie
ontheline3y=2x+1,then2(α+β+γ+δ)isequalto
[31-Jan-2024Shift1]
Options:
A.
10
B.
5
C.
12
D.
8
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question12
LetA(a,b),B(3,4)and(−6,−8)respectivelydenotethecentroid,
circumcentreandorthocentreofatriangle.Then,thedistanceofthe
pointP(2a+3,7b+5)fromtheline2x+3y−4=0measuredparallel
tothelinex−2y−1=0is
[31-Jan-2024Shift2]
Options:
A.
B.
C.
D.
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question13
LetA(−2,−1),B(1,0),C(α,β)andD(γ,δ)betheverticesofa
parallelogramABCD.IfthepointClieson2x−y=5andthepointD
lieson3x−2y=6,thenthevalueof|α+β+γ+δ|isequalto____
[31-Jan-2024Shift2]
Answer:32
Solution:
Question14
LetABCbeanisoscelestriangleinwhichAisat(−1,0),∠A=2π/3,AB
=ACandBisonthepositivex-axis.IfBC=4√3andthelineBC
intersectstheliney=x+3at(α,β),thenβ42is:
[1-Feb-2024Shift2]
Answer:36
Solution:
Question15
LetPQRbeatriangle.ThepointsA,BandCareonthesidesQR,RP
andPQrespectivelysuchthat QA
AR =RB
BP =PC
CQ =1
2.Then Area (△PQR)
Area (△ABC)isequal
to
[24-Jan-2023Shift1]
Options:
A.4
B.3
C.2
D.
Answer:B
Solution:
LetPis
0,Qis
qandRis
r
Ais 2
q+
r
3,Bis 2
r
3andCis
q
3
Areaof△PQRis = 1
2
q×
r
Areaof△ABCis 1
2
AB ×
AC
AB =
r2
q
3,
AC =
r
q
3
Areaof△ABC =1
6
q×
r
Area (△PQR)
Area(△ABC)=3
||
||
||
-------------------------------------------------------------------------------------------------
Question16
TheequationsofthesidesABandACofatriangleABCare
(λ+1)x+λy =4andλx + (1λ)y+λ=0respectively.ItsvertexAison
they-axisanditsorthocentreis(1,2).Thelengthofthetangentfrom
thepointCtothepartoftheparabolay2=6xinthefirstquadrantis
[24-Jan-2023Shift2]
Options:
A.6
B.22
C.2
D.4
Answer:B
Solution:
AB : (λ+1)x+λy =4
AC :λx + (1λ)y+λ=0
VertexAisony-axis
x=0
Soy=4
λ,y=λ
λ1
4
λ=λ
λ1
λ=2
AB :3x +2y =4
AC :2x y+2=0
A(0,2)Let C(α, +2)
-------------------------------------------------------------------------------------------------
Question17
Theequationsoftwosidesofavariabletrianglearex =0andy =3,and
itsthirdsideisatangenttotheparabolay2=6x.Thelocusofits
circumcentreis:
[25-Jan-2023Shift2]
Options:
A.4y218y 3x 18 =0
B.4y2+18y +3x +18 =0
C.4y218y +3x +18 =0
D.4y218y 3x +18 =0
Answer:C
Solution:
Solution:
Now(SlopeofAltitudethroughC) 3
2= 1
α13
2= 1α= 1
2
SoC1
2,1
LetEquationoftangentbey=mx +3
2m
m2+2m 3=0
m=1, 3
SotangentwhichtouchesinfirstquadrantatTis
Ta
m2,2a
m
3
2,3
CT = 4+4=22
( )
( ) ( )
( )
( )
( )
y2=6x&y2=4ax
4a =6a=3
2
-------------------------------------------------------------------------------------------------
Question18
AtriangleisformedbyX-axis,Y-axisandtheline3x +4y =60.Then
thenumberofpointsP(a,b)whichliestrictlyinsidethetriangle,where
aisanintegerandbisamultipleofa,is________.
[25-Jan-2023Shift2]
Answer:31
Solution:
y=mx +3
2m; (m0)
h=6m 3
4m2,k=6m +3
4m ,Noweliminatingmandweget
3h =2(−2k2+9k 9)
4y218y +3x +18 =0
Ifx=1,y=57
4=14.25
(1,1)(1,2) (1,14) 14 pts.
Ifx=2,y=27
2=13.5
(2,2)(2,4).. . (2,12) 6pts.
Ifx=3,y=51
4=12.75
(3,3)(3,6) (3,12) 4pts.
Ifx=4,y=12
(4,4)(4,8) 2pts.
Ifx=5.y=45
4=11.25
(5,5), (5,10) 2pts.
Ifx=6,y=21
2=10.5
(6,6) 1 pt
-------------------------------------------------------------------------------------------------
Question19
Alightrayemitsfromtheoriginmakinganangle30withthepositive
x-axis.Aftergettingreflectedbythelinex +y=1,ifthisrayintersects
x-axisatQ,thentheabscissaofQis
[29-Jan-2023Shift1]
Options:
A. 2
(√31)
B. 2
3+ 3
C. 2
3 3
D. 3
2(√3+1)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question20
LetBandCbethetwopointsontheliney +x=0suchthatBandCare
symmetricwithrespecttotheorigin.SupposeAisapointony 2x =2
suchthatABCisanequilateraltriangle.Then,theareaoftheABCis
[29-Jan-2023Shift1]
Options:
A.33
B.23
Ifx=7,y=39
4=9.75
(7,7) 1 pt.
Ifx=8,y=9
(8,8) 1 pt.
Ifx=9y =33
4=8.25⇒nopt.
Total = 31 pts.
Slopeofreflectedray = tan 60= 3
Liney=x
3intersecty+x=1at 3
3+1,1
3+1
Equationofreflectedrayis
y1
3+1= 3 x 3
3+1
Puty=0x=2
3+ 3
( )
( )
C. 8
3
D. 10
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question21
Atriangleisformedbythetangentsatthepoint(2,2)onthecurves
y2=2xandx2+y2=4x,andthelinex +y+2=0.Ifristheradiusofits
circumcircle,thenr2isequalto_______.
[29-Jan-2023Shift2]
Answer:10
Solution:
AtA x =y
Y2x =2
(−2, 2)
Heightfromlinex+y=0
h=4
2
Areaof∆ = 3
4
h2
sin 260 =8
3
S1:y2=2x S2:x2+y2=4x
P(2,2)iscommonpointonS1&S2
T1istangenttoS1atPT1:y2=x+2
T1:x2y +2=0
T2istangenttoS2atPT2:x2+y2=2(x+2)
T2:y=2
L3:x+y+2=0isthirdline
-------------------------------------------------------------------------------------------------
Question22
AstraightlinecutsofftheinterceptsOA =aandOB =bonthepositive
directionsofx-axisandyaxisrespectively.Iftheperpendicularfrom
originOtothislinemakesanangleof π
6withpositivedirectionofy-axis
andtheareaofOABis 98
33,thena2b2isequalto:
[30-Jan-2023Shift1]
Options:
A. 392
3
B.196
C. 196
3
D.98
Answer:A
Solution:
Solution:
PQ =a= 20
QR =b= 8
RP =c=6
Area (∆PQR) = = 1
2×6×2=6
r=abc
4=160
4= 10 r2=10
Equationofstraightline: x
a+y
b=1
-------------------------------------------------------------------------------------------------
Question23
Iftheorthocentreofthetriangle,whoseverticesare(1,2), (2,3)and
(3,1)is(α,β),thenthequadraticequationwhoserootsareα +4βand
+β,is
[1-Feb-2023Shift1]
Options:
A.x219x +90 =0
B.x218x +80 =0
C.x222x +120 =0
D.x220x +99 =0
Answer:D
Solution:
Orx cos π
3+ysin π
3=p
x
2+y3
2=p
x
3p +y
2p =1
Comparingboth:a=2p,b=2p
3
Nowareaof△OAB =1
2ab =98
3 3
1
22p2p
3=98
3 3
p2=49
a2b2=4p24p2
3=2
34p2
=8
349 =392
3
HeremBH ×mAC = 1
β3
α2
1
2= 1
β3= 4
β= 1
mAH ×mBC = 1
β2
α1(−2) = 1
( ) ( )
( )
-------------------------------------------------------------------------------------------------
Question24
Thecombinedequationofthetwolinesax +by +c=0and
ax+by+c=0canbewrittenas(ax +by +c)(ax+by+c) = 0
Theequationoftheanglebisectorsofthelinesrepresentedbythe
equation2x2+xy 3y2=0is
[1-Feb-2023Shift1]
Options:
A.3x2+5xy +2y2=0
B.x2y2+10xy =0
C.3x2+xy 2y2=0
D.x2y210xy =0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question25
Thestraightlines11and12passthroughtheoriginandtrisecttheline
segmentofthelineL :9x +5y =45betweentheaxes.Ifm1andm2are
theslopesofthelines11and12,thenthepointofintersectionofthe
liney = (m1+m2)xwithLlieson.
[6-Apr-2023shift1]
Options:
4=α1
2( 1) = α+3
=5
α=5
3,β=7
3H5
3,7
3
α+ =5
3+28
3=33
3=11
β+ =7
3+20
3=27
3=9
x220x +99 =0
( )
Equationofthepairofanglebisectorforthehomogenousequationax2+2hxy +b2=0isgivenas
x2y2
ab=xy
h
Herea=2,h=12&b= 3
Equationwillbecome
x2y2
2 (−3)=xy
12
x2y2=10xy
x2y210xy =0
A.6x +y=10
B.6x y=15
C.y 2x =5
D.y x=5
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question26
LetA(0,1), B(1,1)andC(1,0)bethemid-pointsofthesidesofa
trianglewithincentreatthepointD.Ifthefocusoftheparabola
Px=2×5+1×0
1+2=10
3
Py=0×2+9×1
1+2=3
P:10
3,3
Similarly→Qx=1×5+2×0
1+2=5
3
Qy=1×0+2×9
1+2=6
Q:5
3,6
Nowm1=30
10
30
=9
10
m2=60
5
30
=18
5
from(1)&(2)
9x +5y =45
9x 2y =0
−+−
7y =45 y=45
7
x=10
7
whichsatisfyyx=5Ans.4
( )
( )
y2=4 axpassingthroughDis(α+β3,0),whereαandβarerational
numbers,then α
β2isequalto
[8-Apr-2023shift2]
Options:
A.6
B.8
C. 9
2
D.12
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question27
TheareaofthequadrilateralABCDwithvertices
A(2,1,1), B(1,2,5), C(−2, 3,5)andD(1, 6, 7)isequalto
[8-Apr-2023shift2]
Options:
A.54
B.938
a=OP =2 b =OQ =2 c =PQ =22
D4
2+2+22,4
2+2+22D2
2+ 2,2
2+ 2
y2=4 ax 2
2+ 2
2=4a 2
2+ 2
4a =2
2+ 2a=1
22 2
42=1
4(2 2)
α=2
4=1
2β=1
4
α
β2=8 Ans.
( ) ( )
( ) ( )
C.48
D.838
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question28
AlinesegmentABoflengthλmovessuchthatthepointsAandB
remainontheperipheryofacircleofradiusλ.Thenthelocusofthe
point,thatdividesthelinesegmentABintheratio2 :3,isacircleof
radius:
[10-Apr-2023shift1]
Options:
A. 2
3λ
B. 19
7λ
C. 3
5λ
D. 19
5λ
Answer:D
VectorArea =
v
=1
2
AB ×
AC +1
2
AC ×
AD
=1
2
AB
AD ×
AC
AB = ^
i+^
j+4^
k
AD = ^
i7^
j8^
k
AC = 4^
i4^
j+4^
k
=1
28^
j+12^
k× (−4)^
i+^
j^
k
=1
2
^
i^
j^
k
0 8 12
1 1 1
= (−2) 20^
i+12^
j8^
k
=8 5^
i3^
j+2^
k
Area =
v=825 +9+4=838 Ans.
( ) ( )
( ) ( )
| |
( )
( )
| |
Solution:
-------------------------------------------------------------------------------------------------
Question29
LetAbethepoint(1,2)andBbeanypointonthecurvex2+y2=16.If
thecentreofthelocusofthepointP,whichdividesthelinesegmentAB
intheratio3 :2isthepointC(α,β)thenthelengthofthelinesegment
ACis
[10-Apr-2023shift2]
Options:
A. 65
5
B. 25
5
C. 35
5
D. 45
5
Answer:C
SinceOABformequilateral∆
OAP =60
AP =
5
cos 60=OA2+AP2OP2
2 OA AP
1
2=
λ2+2
25 OP2
5
2
5=λ2+2
25 OP2
OP 2 =19λ2
25
OP =19
5λ
Therefore,locusofpointPis 19
5λ
( )
Solution:
-------------------------------------------------------------------------------------------------
Question30
LettheequationsoftwoadjacentsidesofaparallelogramABCDbe
2x 3y = 23and5x +4y =23.IftheequationofitsonediagonalACis
3x +7y =23andthedistanceofAfromtheotherdiagonalisd ,then
50d2isequalto_______.
[10-Apr-2023shift2]
Answer:529
Solution:
12 cos θ +2
5=h12 cos θ =5h 2
sq&add
144 = (5h 2)2+ (5k 4)2
x2
5
2+y4
5
2=144
25
Centre 2
5,4
5 (α,β)
AC =12
5
2+24
5
2
=9
25 +36
25 =45
5=35
5
( ) ( )
( )
( ) ( )
A&Cpointwillbe(−4,5)&(3,2)
midpointofACwillbe 1
2,7
2
equationofdiagonalBDis
y7
2=
7
2
1
2
x+1
2
7x +y=0
DistanceofAfromdiagonalBD
=d=23
50
( )
( )
-------------------------------------------------------------------------------------------------
Question31
LetRbearectanglegivenbythelinex =0,x=2,y=0andy =5.Let
A(α,0)andB(0,β), α [0,2]andβ [0,5],besuchthattheline
segmentABdividestheareaoftherectangleRintheratio4 :1.Then,
themidpointofABliesona:
[11-Apr-2023shift1]
Options:
A.straightline
B.parabola
C.circle
D.hyperbola
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
ar(OPQR)
or(OAB)=4
1
LetMbethemid-pointofAB.
M(h,k) α
2,β
2
10 1
2αβ
1
2αβ
=4
5
2αβ =10 αβ =4
(2h)(2K) = 4
∴LocusofMisxy = 1
Whichisahyperbola.
( )
Ifthelinel 1:3y 2x =3istheangularbisectoroftheline
l2:xy+1=0andl 3:ax +βy +17,thenα2+β2α βisequalto
_______.
[11-Apr-2023shift2]
Answer:348
Solution:
-------------------------------------------------------------------------------------------------
Question33
Ifthepoint α,73
3liesonthecurvetracedbythemid-pointsofthe
linesegmentsofthelinesx cos θ +ysin θ =7,θ0,π
2betweenthe
co-ordinatesaxes,thenαisequalto
[12-Apr-2023shift1]
Options:
A.73
B.-7
C.7
D.73
Answer:C
Solution:
( )
( )
Pointofintersectionofℓ1:3y 2x =3
2:xy+1=0isP (0,1)
Whichliesonℓ3:αx βy +17 =0,
β= 17
ConsiderarandompointQ (−1,0)
onℓ2:xy+1=0,imageofQabout
2:xy+1=0,isQ17
13 ,6
13 whichiscalculatedbyformulae
x (−1)
2=y0
3=22+3
13
Now,Qliesinℓ3:αx +βy +17 =0
α=7
Now,α2+β2αβ=348
( )
( )
pt α,73
3
( )
Question32
-------------------------------------------------------------------------------------------------
Question34
Let(α,β)bethecentroidofthetriangleformedbythelines
15x y=82,6x 5y = 4and9x +4y =17.Thenα +2βand2α βare
therootsoftheequation
[13-Apr-2023shift2]
Options:
A.x213x +42 =0
B.x210x +25 =0
C.x27x +12 =0
D.x214x +48 =0
Answer:A
Solution:
x cos θ +ysin θ =7
x -intercept =7
cos θ
yintercept =7
sin θ
A:7
cos θ,0 B :0,7
sin θ
LocusofmidptM:(h,k)
h=7
2 cos θ,k=7
2sin θ
7
2sin θ =73
3sin θ =3
2θ=π
3
α=7
2 cos θ =7
( ) ( )
-------------------------------------------------------------------------------------------------
Question35
If(α,β)istheorthocenterofthetriangleABCwithvertices
A(3, 7), B(−1,2)andC(4,5),then9α +60isequalto
[15-Apr-2023shift1]
Options:
A.30
B.35
C.40
D.25
Answer:D
Solution:
Solution:
Centroid (α,β) = 6+1+5
3,87+2
3= (4,1)
α+ =4+2=6
β=81=7
Quadraticequation
x2 (6+7)x+ (6×7) = 0
x213x +42 =0
( )
AltitudeofBC :y+7=5
3(x3)
3y +21 = 5x +15
5x +3y +6=0
AltitudeofAC:y2=1
12 (x+1)
12y 24 = x1
x+12y =23
-------------------------------------------------------------------------------------------------
Question36
FromthetopAofaverticalwallABofheight30m,theanglesof
depressionofthetopPandbottomQofaverticaltowerPQare15and
60respectively,BandQareonthesamehorizontallevel.IfCisapoint
onABsuchthatCB =PQ,thenthearea(inm2)ofthequadrilateral
BCPQisequalto:
[6-Apr-2023shift1]
Options:
A.200(3 3)
B.300(√3+1)
C.300(√31)
D.600(√31)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question37
α=47
19 ,β=121
57
+60 =25
AB
BQ =tan 60
BQ =30
3=103=y
& ACP
AC
CP =tan 15(30 x)
y= (2 3)
30 x=103(2 3)
30 x=20330
x=60 203
Area =xy=20(3 3) 103
=600(√31)
TheangleofelevationofthetopPofatowerfromthefeetofone
personstandingdueSouthofthetoweris45andfromthefeetof
anotherpersonstandingduewestofthetoweris30.Iftheheightof
thetoweris5meters,thenthedistance(inmeters)betweenthetwo
personsisequalto
[11-Apr-2023shift2]
Options:
A.10
B.55
C. 5
25
D.5
Answer:A
Solution:
Solution:
TowerAB =5m
APB =45
PAB =90
tan 45=AB
AP
1=AB
AP
AP =5m
tan 30=AB
AQ
-------------------------------------------------------------------------------------------------
Question38
LetA 3
a, a,a>0,beafixedpointinthexy-plane.TheimageofAiny-axisbeBandtheimageofBinx-axisbeC.
IfD(3 cos θ,a sin θ)isapointinthefourthquadrantsuchthatthemaximumareaofACDis12squareunits,thenais
equalto____
[24-Jun-2022-Shift-1]
LetA 3
a, a,a>0,beafixedpointinthexy-plane.TheimageofAin
y-axisbeBandtheimageofBinx-axisbeC.IfD(3 cos θ,a sin θ)isa
pointinthefourthquadrantsuchthatthemaximumareaofACDis12
squareunits,thenaisequalto____
[24-Jun-2022-Shift-1]
Answer:8
Solution:
( )
( )
1
13=5
AQ
AQ =53
AP2+AQ2=PQ2
PQ2=52+ (53)2
PQ2=25 +75 =100
PQ =10 cm
Option(A)10 cmcorrect.
-------------------------------------------------------------------------------------------------
Question39
LettheareaofthetrianglewithverticesA(1,α), B(α,0)andC(0,α)be
4sq.units.Ifthepoints(α, α ), (−α,α)and(α2,β)arecollinear,then
βisequalto
[24-Jun-2022-Shift-2]
Options:
A.64
B.8
C.64
D.512
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question40
LetRbethepoint(3,7)andletPandQbetwopointsontheline
x+y=5suchthatPQRisanequilateraltriangle.Thentheareaof
PQRis:
[26-Jun-2022-Shift-1]
Options:
A. 25
43
B. 253
2
C. 25
3
D. 25
23
Answer:D
Solution:
Question41
InanisoscelestriangleABC,thevertexAis(6,1)andtheequationof
thebaseBCis2x +y=4.LetthepointBlieonthelinex+3y =7.If
(α,β)isthecentroidofABC,then15(α+β)isequalto:
[27-Jun-2022-Shift-1]
-------------------------------------------------------------------------------------------------
Question42
ArectangleRwithendpointsofoneofitssidesas(1,2)and(3,6)is
inscribedinacircle.Iftheequationofadiameterofthecircleis
2x y+4=0,thentheareaofRis
[27-Jun-2022-Shift-1]
Answer:16
Solution:
2x +y=4
2x +6y =14 y=2,x=3
B(1,2)
LetC(k,42k)
NowAB2=AC2
52+ (−1)2= (6k)2+ (−3+2k)2
5k224k +19 =0
(5k 19)(k1) = 0k=19
5
C19
5, 18
5
Centroid(α,β)
α=
6+1+19
5
3=18
5
β=
1+218
5
3= 1
5
Now15(α+β)
15 17
5=51
}
( )
( )
Options:
A.39
B.41
C.51
D.63
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question43
ArayoflightpassingthroughthepointP(2,3)reflectsonthex-axisat
pointAandthereflectedraypassesthroughthepointQ(5,4).LetRbe
thepointthatdividesthelinesegmentAQinternallyintotheratio2 :1.
Lettheco-ordinatesofthefootoftheperpendicularMfromRonthe
bisectoroftheanglePAQbe(α,β).Then,thevalueof7α +3βisequal
to
[28-Jun-2022-Shift-1]
Answer:31
Solution:
Asslopeoflinejoining(1,2)and(3,6)is2givendiameterisparalleltoside
a= (31)2+ (62)2= 20
andb2=4
5b=8
5
Area =ab =258
5=16
4
5α=3
α2 8=15
α=23
7
A=23
7,0 Q = (5,4)
R=
10 +23
7
3,8
3
=31
7,8
3
BisectorofanglePAQisX=23
7
M=23
7,8
3
So, + =31
( )
( )
( )
( )
Question44
Letatrianglebeboundedbythelines
L1:2x +5y =10;L2: 4x +3y =12andthelineL3,whichpasses
throughthepointP(2,3),intersectsL2atAandL1atB.IfthepointP
dividestheline-segmentAB,internallyintheratio1 :3,thenthearea
ofthetriangleisequalto:
[28-Jun-2022-Shift-2]
Options:
A. 110
13
B. 132
13
C. 142
13
D. 151
13
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
L1:2x +5y =10
L2: 4x +3y =12
SolvingL1andL2weget
C15
13 ,32
13
Now,LetA x1,1
3(12 +4x1) and
B x2,1
5(10 2x2)
3x1+x2
4=2
and
(12 +4x1) + 10 2x2
5
4=3
So,3x1+x2=8and10x1x2= 5
So,(x1,x2) = 3
13,95
13
A=3
13,56
13 andB=95
13,12
13
=1
2
3
13
44
13
56
13
110
13 +12860
169
=132
13 sq.units
( )
( )
( )
( )
( ) ( )
| ( ( ) ( ) ( ) ) |
Question45
ThedistancebetweenthetwopointsAandAwhichlieony =2such
thatboththelinesegmentsABandAB(whereBisthepoint(2,3))
subtendangle π
4attheorigin,isequalto:
[29-Jun-2022-Shift-1]
Options:
A.10
B. 48
5
C. 52
5
D.3
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question46
Thedistanceoftheoriginfromthecentroidofthetrianglewhosetwo
sideshavetheequationsx 2y +1=0and2x y1=0andwhose
orthocenteris 7
3,7
3is:
[29-Jun-2022-Shift-2]
Options:
A.2
B.2
C.22
( )
M1=32 M2=2x
tan π 4=322x
1+62x =1
x1=10,x2= 25
AA1=52 5
| |
D.4
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question47
LetABandPQbetwoverticalpoles,160mapartfromeachother.LetC
bethemiddlepointofBandQ,whicharefeetofthesetwopoles.Let π
8
andθbetheanglesofelevationfromCtoPandA,respectively.Ifthe
heightofpolePQistwicetheheightofpoleAB,thentan2θisequalto
[28-Jun-2022-Shift-1]
ForpointA,
2x y1=0
x2y +1=0
Solving(1)and(2),weget
x=1,y=1
∴PointA= (1,1)
AltitudefromBtolineACisperpendiculartolineAC.
∴EquatorofaltitudeBHis
2x +y+λ=0
ItpassesthroughpointH7
3,7
3soitsatisfytheequation(3).
14
3+7
3+λ=0
α= 7
∴AltitudeBH =2x +y7=0
Solvingequation(1)and(4),weget
x=2,y=3
∴PointB= (2,3)
AltitudefromCtolineABisperpendiculartolineAB.
∴EquationofaltitudeCHis
x+2y +λ=0
ItpassesthroughpointH7
3,7
3soitsatisfyequation(5).
7
3+14
3+λ=0
λ= 7
∴AltitudeCH =x+2y 7=0
Solvingequation(2)and(6),weget
x=3,y=2
∴PointC= (3,2)
CentroidG(x,y)oftriangleA(1,1), B(2,3)andC(3,2)is
x=1+2+3
3=2,y=1+2+3
3=2
NowdDistanceofpointG(2,2)fromcenterO(0,0)is
OG =22+22=22
( )
( )
Options:
A. 322
2
B. 3+ 2
2
C. 322
4
D. 3 2
4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question48
Fromthebaseofapoleofheight20meter,theangleofelevationofthe
topofatoweris60.Thepolesubtendsanangle30atthetopofthe
tower.Thentheheightofthetoweris
[29-Jun-2022-Shift-2]
Options:
A.153
B.203
C.20 +103
D.30
Answer:D
Solution:
l
80 =tan θ.... (i)
2l
80 =tan π
8.... (ii)
From(i)and(ii)
1
2=tan θ
tan π
8
tan2θ=1
4tan2π
8
tan2θ=21
4(√2+1)=322
4
Solution:
-------------------------------------------------------------------------------------------------
Question49
Aline,withtheslopegreaterthanone,passesthroughthepointA(4,3)
andintersectsthelinex y2=0atthepointB.Ifthelengthofthe
linesegmentABis 29
3,thenBalsoliesontheline:
[25-Jul-2022-Shift-1]
Options:
A.2x +y=9
B.3x 2y =7
C.x +2y =6
D.2x 3y =3
Answer:C
Solution:
HereABisatowerandCDisapole.
IntriangleABC,tan 60=AB
AC =20 +h
x...... . (1)
IntriangleBED,tan 30=h
x..... . (2)
Divideequation(1)byequation(2),weget
tan 60
tan 30=20 +h
x×x
h
3
1
3
=20 +h
h
3=20 +h
h
3h =20 +h
h=10m
Heightoftower =20 +10 =30m
-------------------------------------------------------------------------------------------------
Question50
LetthepointP(α,β)beataunitdistancefromeachofthetwolines
L1:3x 4y +12 =0,andL2:8x +6y +11 =0.IfPliesbelowL1and
aboveL2,then100(α+β)isequalto
[25-Jul-2022-Shift-2]
Options:
A.14
B.42
C.22
D.14
Answer:D
Solution:
Solution:
Letinclinationofrequiredlineisθ,
SothecoordinatesofpointBcanbeassumedas
429
3cos θ,329
3sin θ
Whichsatisficesxy2=0
429
3cos θ 3+29
3sin θ 2=0
sin θ cos θ =3
29
Bysquaring
sin 2 θ =20
29 =2 tan θ
1+tan2θ
tan θ =5
2only(becauseslopeisgreaterthan1)
sin θ =5
29,cos θ =2
29
PointB:10
3,4
3
Whichalsosatisfiesx+2y =6
( )
( )
-------------------------------------------------------------------------------------------------
Question51
ApointPmovessothatthesumofsquaresofitsdistancesfromthe
points(1,2)and(−2,1)is14.Letf (x,y) = 0bethelocusofP,which
intersectsthex-axisatthepointsA,Bandthey-axisatthepointsC,D.
ThentheareaofthequadrilateralACBDisequalto:
[26-Jul-2022-Shift-1]
Options:
A. 9
2
B. 317
2
C. 317
4
D.9
Answer:B
Solution:
Solution:
L1:3x 4y +12 =0
L2:8x +6y +11 =0
EquationofanglebisectorofL1andL2ofanglecontainingorigin
2(3x 4y +12) = 8x +6y +11
2x +14y 13 =0....... (i)
+12
5=1
+7=0 .....(ii)
Solutionof2x +14y 13 =0and3x 4y +7=0givestherequiredpointP(α,β), α=23
25 ,β=53
50100(α+β) = 14
LetpointP: (h,k)
(h1)2+ (k2)2+ (h+2)2+ (k1)2=14
2h2+2k2+2h 6k 4=0
LocusofP:x2+y2+x3y 2=0
Intersectionwithx-axis,
x2+x2=0
-------------------------------------------------------------------------------------------------
Question52
TheequationsofthesidesAB,BCandCAofatriangleABCare
2x +y=0,x+py =15aandx y=3respectively.Ifitsorthocentreis
(2,a), 1
2<a<2,thenpisequalto_________.
[26-Jul-2022-Shift-1]
Answer:3
Solution:
Solution:
-------------------------------------------------------------------------------------------------
x= 2,1
Intersectionwithy-axis,
y23y 2=0
y=3± 17
2
AreaofthequadrilateralACBDis
=1
2(|x1|+ | x2|)(|y1|+ | y2|)
=1
2×3× 17 =317
2
SlopeofAH =a+2
1
SlopeofBC = 1
p
p=a+2...... (i)
CoordinateofC=18p 30
p+1,15p 33
p+1
SlopeofH C =
15p 33
p+3a
18p 33
p+12
=15p 33 (p2)(p+1)
18p 30 2p 2
=16p p231
16p 32
16p p231
16p 32 ×−2= 1
p28p +15 =0
p=3 or 5
Butifp=5thena=3notacceptable
p=3
( )
Question53
LetA(1,1), B(−4,3), C(−2, 5)beverticesofatriangleABC,Pbea
pointonsideBC,and1and2betheareasoftrianglesAPBandABC,
respectively.If1: 2=4:7,thentheareaenclosedbythelinesAP,AC
andthex-axisis
[27-Jul-2022-Shift-1]
Options:
A. 1
4
B. 3
4
C. 1
2
D.1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question54
TheequationsofthesidesAB,BCandCAofatriangleABCare
2x +y=0,x+py =39andx y=3respectivelyandP(2,3)isits
circumcentre.ThenwhichofthefollowingisNOTtrue?
[27-Jul-2022-Shift-2]
Options:
1
2
=
1
2×BP ×AH
1
2×BC ×AH
=4
7
P20
7,11
7
LineAC :y1=2(x1)
Intersectionwithx-axis = 1
2,0
LineAP :y1=2
3(x1)
Intersectionwithx-axis 1
2,0
Verticesare(1,1), 1
2,0and 1
2,0
Area = 1
2sq.unit
( )
( )
( )
( ) ( )
A.(AC)2=9p
B.(AC)2+p2=136
C.32 <area(∆ABC) < 36
D.34 <area(△ABC) < 38
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question55
Fort (0,),ifABCisanequilateraltrianglewithvertices
A(sin t, cos t), B(cost,sin t)andC(a,b)suchthatitsorthocentrelieson
acirclewithcentre 1,1
3,then(a2b2)isequalto:
[28-Jul-2022-Shift-1]
Options:
A. 8
3
B.8
C. 77
9
D. 80
9
Answer:B
Solution:
( )
Intersectionof2x +y=0andxy=3:A(1, 2)
EquationofperpendicularbisectorofABis
x2y = 4
EquationofperpendicularbisectorofACis
x+y=5
PointBistheimageofAinlinex2y +4=0whichisobtainedasB13
5,26
5
SimilarlyvertexC: (7,4)
EquationoflineBC :x+8y =39
So,p=8
AC =(71)2+ (4+2)2=62
AreaoftriangleABC =32.4
( )
Solution:
-------------------------------------------------------------------------------------------------
Question56
LetthecircumcentreofatrianglewithverticesA(a,3), B(b,5)and
C(a,b), ab >0beP(1,1).IfthelineAPintersectsthelineBCatthe
pointQ(k1,k2),thenk1+k2isequalto:
[29-Jul-2022-Shift-1]
Options:
A.2
B. 4
7
C. 2
7
D.4
Answer:B
Solution:
Solution:
LetP(h,k)betheorthocentreof△ABC
Then
h=sint +cos t +a
3,k=cos t +sint +b
3
(orthocentrecoincidewithcentroid)
(3h a)2+ (3k b)2=2
ha
3
2+kb
3
2=2
9
∵orthocentreliesoncirclewithcentre 1,1
3
a=3,b=1
a2b2=8
( ) ( )
( )
-------------------------------------------------------------------------------------------------
Question57
Letm1,m2betheslopesoftwoadjacentsidesofasquareofsideasuch
thata2+11a +3(m1
2+m2
2) = 220.Ifonevertexofthesquareis
(10(cos α sin α), 10(sin α +cos α)),whereα 0,π
2andtheequation
ofonediagonalis(cos α sin α)x+ (sin α +cos α)y10,then
72(sin4α+cos4α) + a23a +13isequalto:
[29-Jul-2022-Shift-2]
Options:
A.119
B.128
C.145
D.155
Answer:B
Solution:
Solution:
( )
LetDbemid-pointofAC,then
b+3
2=1b= 1
LetEbemid-pointofBC,
5b
ba
(3+b)
2
a+b
21
= 1
Onputtingb= 1,wegeta=5or−3
Buta=5isrejectedasab >0
A(−3,3), B(−1,5), C(−3, 1), P(1,1)
LineBC y=3x +8
LineAP y=3x
2
Pointofintersection 13
7,17
7
( )
m1m2= 1
a2+11a +3 m1
2+1
m1
2=220
Eq.ofAC
AC = (cos α sin α) + (sin α +cos α)y=10
BD = (sin α cos α)x+ (sin α cos α)y=0
(10(cos α sin α), 10(sin α cos α))
SlopeofAC =sin α cos α
sin α +cos α =tan θ =M
( )
( )
-------------------------------------------------------------------------------------------------
Question58
LetA(α, 2), B(α,6)andC α
4, 2 beverticesofaABC.If 5,α
4is
thecircumcentreofABC,thenwhichofthefollowingisNOTcorrect
aboutABC?
[29-Jul-2022-Shift-2]
Options:
A.areais24
B.perimeteris25
C.circumradiusis5
D.inradiusis2
Answer:B
Solution:
( ) ( )
Eq.oflinemakinganangleπ4withAC
m1,m2=
m±tan π
4
1±m tan π
4
=m+1
1mor m1
1+m
sin α cos α
sin α +cos α +1
1sin α cos α
sin α +cos α
,
sin α cos α
sin α +cos α 1
1+sin α cos α
sin α +cos α
m1,m2=tan α,cot α
midpointofAC&BD
=M(5(cos α sin α), 5(cos α +sin α))
B(10(cos α sin α), 10(cos α +sin α))
a=AB = 2BM = 2(52) = 10
a=10
a2+11a +3 m1
2+1
m12=220
100 +110 +3(tan2α+cot2α) = 220
Hencetan2α=3,tan2α=1
3α=π
3or π
6
Now72(sin 4α+cos4α) + a23a +13
=72 9
16 +1
16 +100 30 +13
=72 5
8+83 =45 +83 =128
( )
( )
( )
( )
-------------------------------------------------------------------------------------------------
Question59
AtowerPQstandsonahorizontalgroundwithbaseQontheground.
ThepointRdividesthetowerintwopartssuchthatQR =15m.Iffroma
pointAonthegroundtheangleofelevationofRis60andthepartPR
ofthetowersubtendsanangleof15atA,thentheheightofthetower
is:
[25-Jul-2022-Shift-1]
Options:
A.5(23+3)m
B.5(√3+3)m
C.10(√3+1)m
D.10(23+1)m
Answer:A
Solution:
Solution:
Circumcentreof△ABC
=
α+α
4
2,62
2
=
8,2
=5,α
4
α=8
area(△ABC) = 1
2
4×8=24sq.units
Perimeter = 8+
4+82+
4
2 = 8+6+10 =24
Circumradius = 10
2=5
r=
s=24
12 =2
( )
( )
( )
( )
-------------------------------------------------------------------------------------------------
Question60
LetaverticaltowerABofheight2hstandsonahorizontalground.Let
fromapointPonthegroundamancanseeuptoheighthofthetower
withanangleofelevation2α.WhenfromP,hemovesadistanced in
thedirectionof
AP,hecanseethetopBofthetowerwithanangleof
elevationα.Ifd = 7h,thentan αisequalto
[27-Jul-2022-Shift-1]
Options:
A.52
B.31
C.72
D.7 3
Answer:C
Solution:
For△AQR,
tan 60=15
x..... . (1
From△AQP,
tan 75=h
x
(2+ 3) = h
x[∵tan 75=2+ 3]
h= (2+ 3)x
= (2+ 3)15
3[From (1)]
= (2+ 3)× 153
3
= (2+ 3) × 53
=5(23+3)m
-------------------------------------------------------------------------------------------------
Question61
TheangleofelevationofthetopPofaverticaltowerPQofheight10
fromapointAonthehorizontalgroundis45.LetRbeapointonAQ
andfromapointB,verticallyaboveR,theangleofelevationofPis60.
IfBAQ =30,AB =dandtheareaofthetrapeziumPQRBisα,then
theorderedpair(d,α)is:
[27-Jul-2022-Shift-2]
Options:
A.(10(√31), 25)
B. 10(√31), 25
2
C.(10(√3+1), 25)
D. 10(√3+1), 25
2
Answer:A
Solution:
Solution:
( )
( )
APM gives
tan 2 α =h
x.....(i)
AQBgives
tan 2 α =2h
x+d=2h
x+h7......(ii)
From(i)and(ii)
tan 2 α =2tan 2 α
1+ 7tan 2 α
Lett=tan α
t=
22t
1t2
1+ 72t
1t2
t227t+3=0
t= 72
LetBR =x
-------------------------------------------------------------------------------------------------
Question62
AhorizontalparkisintheshapeofatriangleOABwithAB =16.A
verticallamppostOPiserectedatthepointOsuchthat
PAO = PBO =15andPCO =45,whereCisthemidpointofAB.
Then(OP)2isequalto
[28-Jul-2022-Shift-2]
Options:
A. 32
3(√31)
B. 32
3(2 3)
C. 16
3(√31)
D. 16
3(2 3)
Answer:B
Solution:
Solution:
x
d=1
2x=d
2
10 x
10 x3= 310 x=1033x
2x =10(√31)
x=5(√31)
d=2x =10(√31)
α=1
2(x+10)(10 x3) = Area(PQRB)
=1
2(535+10)(10 53(√31))
=1
2(53+5)(10 15 +53) 1
2(75 25) = 25
-------------------------------------------------------------------------------------------------
Question63
TheangleofelevationofthetopofatowerfromapointAduenorthof
itisαandfromapointBatadistanceof9unitsduewestofAis
cos13
13 .IfthedistanceofthepointBfromthetoweris15units,
thencot αisequalto:
[29-Jul-2022-Shift-1]
Options:
A. 6
5
B. 9
5
C. 4
3
D. 7
3
Answer:A
Solution:
Solution:
( )
OP =OA tan 15 =OB tan 15.......(i)
OP =OC tan 45 OP =OC.......(ii)
OA =OB......(iii)
OC2+82=OA2
OP2+64 =OP23+1
31
2
64 =OP2(√3+1)2 (√31)2
(√31)2
=OP243
(√31)2
OP2=64(√31)2
43=32
3(2 3)
( )
[ ]
( )
-------------------------------------------------------------------------------------------------
Question64
Theintersectionofthreelinesx y=0,x+2y =3and2x +y=6isa
[2021,26Feb.Shift-1]
Options:
A.rightangledtriangle
B.equilateraltriangle
C.isoscelestriangle
D.Noneofthese
Answer:C
Solution:
Solution:
N A =15292=12
h
15 =tan θ =2
3
h=10units
cot α =12
10 =6
5
Givenlines,xy=0,x+2y =3,2x +y=6
-------------------------------------------------------------------------------------------------
Question65
Ifthecurvex2+2y2=2intersectsthelinex +y=1attwopointsPand
Q,thentheanglesubtendedbythelinesegmentPQattheoriginis
[2021,25Feb.Shift-II]
Options:
A. π
2+tan11
4
B. π
2tan11
4
C. π
2+tan11
3
D. π
2tan11
3
Answer:A
Solution:
Solution:
( )
( )
( )
( )
Theonlytrianglewhichincludeallthreelinesis△ABC.
Now,AB = (21)2+ (21)2= 2
AC = (23)2+ (20)2= 5
BC = (31)2+ (01)2= 5
AC =BC(twosidesareequal)
ABCisisoscelestriangle.
Curvex2+2y2=2intersectthelinex+y=1atpointsPandQ.Firstwehavetofindanycommonrelationbetween
thesetwocurves.
Usesubstitutionforthesameasfollows,
-------------------------------------------------------------------------------------------------
Question66
Theimageofthepoint(3,5)inthelinex y+1=0,lieson
[2021,25Feb.Shift-1]
Options:
A.(x2)2+ (y2)2=12
B.(x4)2+ (y+2)2=16
C.(x4)2+ (y4)2=8
D.(x2)2+ (y4)2=4
Answer:D
Solution:
Solution:
x2+2y2=2⋅⋅⋅⋅⋅⋅ (i)
x+y=1,then (x+y)2=12
x2+y2+2xy =1⋅⋅⋅⋅⋅⋅ (ii)
WecanwriteEq.(i)as,
x2+2y22(1)2=0
x2+2y22(x+y)2=0 [usingEq.(ii)inEq.(i)]
x2+2y22x22y24xy =0
x24xy =0 x(x+4y) = 0
Given,x=0andx+4y =0ory=1
4x
Drawtheliney=1
4xongraphandtake
arbitrarypoint(anyone)asfollows,
Fromgivengraph,
tan θ =1
4θ=tan11
4
Wehavetwolines,y= 1
4xandx=0(i.e.Y-axis).
Thus,anylinejoiningthesetwocurvesmakesanangle π
2+θatorigin.
∴Answeris π
2+tan11
4.
( )
( )
ImageofP(3,5)onthelinexy+1=0is
x3
1=y5
1=2(35+1)
2
-------------------------------------------------------------------------------------------------
Question67
Amaniswalkingonastraightline.Thearithmeticmeanofthe
reciprocalsoftheinterceptsofthislineonthecoordinateaxesis 1
4.
ThreestonesA,BandCareplacedatthepoints(1,1), (2,2)and(4,4)
respectively.Thenwhichofthesestonesis\/areonthepathoftheman?
24Feb2021Shift1
Options:
A.Aonly
B.Conly
C.Allthethree
D.Bonly
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question68
LetA(−1,1), B(3,4)andC(2,0)begiventhreepoints.Aline
y=mx,m>0intersectslinesACandBCatpointPandQ1respectively.
LetA1andA2betheareasofABCandPQC1respectively,suchthat
A1=3A2,thenthevalueofmisequalto
[2021,16MarchShift-II]
Options:
x3
1=y5
1=1
x3
1=1 and y5
1=1
x=4,y=4
∴Requiredimageisat(4,4).
Clearly,thispointlieson
(x2)2+ (y4)2=4as
(4,4)satisfiesthisequation.
Letthelinebey=mx +c
x-intercept: c
m
y-intercept:c
A.M.ofreciprocalsoftheintercepts:
m
c+1
c
2=1
42(1m) = c
Line:y=mx +2(1m) = c
(y2) m(x2) = 0
⇒linealwayspassesthrough(2,2)
A. 4
15
B.1
C.2
D.3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question69
Given,pointsA(−1,1), B(3,4), C(2,0)
EquationofAC =y1
x+1=01
2+1=1
3
3y 3= x1x+3y =2⋅⋅⋅⋅⋅⋅ (i)
OnsolvingEq.(i)andy=mx,weget
P2
3m +1,2m
3m +1
EquationofBC =y0
x2=40
32
y=4x 8⋅⋅⋅⋅⋅⋅ (ii)
Similarly,onsolvingEq.(ii)andy=mx ,
weget08
4m,8m
4m
Areaof△ABC =3Areaof△PQC(given)
1
2
11 1
2 0 1
3 4 1
=3×1
2
2 0 1
8
4m
8m
21
2
3m +1
2m
3m +11
13 =31
4m
1
3m +1
2 0 1
8 8m 4m
2 2m 3m +1
13 =3
4+11m 3m2× (52m2)
15m211m 4=0
m=1,4
15 [butm>0]
m=1
( )
( )
| | | |
( ) ( ) | |
InaPQR,thecoordinatesofthepointsPandQare(−2,4)and
(4, 2),respectively.IftheequationoftheperpendicularbisectorofPR
is2x y+2=0,thenthecentreofthecircumcircleofthePQRis
[2021,17MarchShift-1]
Options:
A.(−1,0)
B.(−2, 2)
C.(0,2)
D.(1,4)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question70
Thenumberofintegralvaluesofm,sothattheabscissaofpointof
LetObethecentreofthecircumcircle.
AndTbethemid-pointofPR.
So,equationofOTisgivenas
2x y+2=0
LetSbethemid-pointofPQ.
Now,Swillbe
2+4
2,42
2= (1,1)
EquationofOS =y1
x1=1
mPQ
mPO =24
4+2= 1
OS =y1=1(x1)
y=x
Now,coordinatesofOwillbetheintersectionoflinesOSandOT.
y=x
2x y+2=0.
2x x+2=0x= 2
y= 20= (−2, 2)
( )
{
intersectionoflines3x +4y =9andy =mx +1isalsoaninteger,is
[2021,18MarchShift-1]
Options:
A.1
B.2
C.3
D.0
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question71
Theequationofoneofthestraightlineswhichpassesthroughthepoint
(1,3)andmakesanangletan1(√2)withthestraightline,y +1=32x
is
[2021,18MarchShift-1]
Options:
A.42x+5y (15 +42) = 0
B.52x+4y (15 +42) = 0
C.42x+5y 42=0
D.42x5y (5+42) = 0
Given, y=mx +1
and3x +4y =9
FromEqs.(i)and(ii),
3x +4(mx +1) = 9
3x +4mx +4=9
x(3+4m) = 5
x=5
3+4m
Given,thattheabscissaofpointofintersectionofEqs.(i)and(ii)i.e.x=5
3+4misaninteger.
∴Possiblevaluesofxare
x=1, 1,5, 5
i.e. 5
4m +3=1or 5
4m +3= 1
or 5
4m +3=5or 5
4m +3= 5
4m =2or−4m =8
or4m = 2or−4m =4
m=1
2, 2, 1
2, 1
1
2,1
21
m= {−1, 2} 1
∴Numberofintegralvaluesofmare2.
{ }
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question72
ConsideratrianglehavingverticesA(−2,3), B(1,9)andC(3,8).Ifaline
LpassingthroughthecircumcentreofABC,bisectslineBC,and
intersectsY -axisatpoint 0,α
2,thenthevalueofrealnumberαis
[2021,20JulyShift-II]
( )
MethodlLetm= Slopeofrequiredline
∴Equationofrequiredline
y3=m(x1)
Given,equationoflineis
32xy1=0
Since,angleθbetweenEqs.(i)and(ii)istan1(√2)
i.e.tan θ = 2
m32
1+32m= 2
(∵SlopeofEq.(i)=mandslopeofEq.(ii) = 32)
Squaringonbothsides,
m262m+18 =2(1+18m2+62m)
35m2+182m16 =0
m=182± 648 +2240
70
=182±382
70
m=22
7, 4
52
Form=22
7,equationofrequiredline
willbe
y3=22
7(x1)
22x7y +21 22=0
(optionsarenotmatchingso,neglectthis)
Form=42
5,equationofrequiredline
willbe
y3=42
5(x1)
5y 15 = 42x+42
42x+5y 15 42=0
42x+5y (15 +42) = 0
| |
Answer:9
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question73
Lettheequationofthepairoflines,y =pxandy =qxcanbewrittenas
(ypx)(yqx) = 0Then,theequationofthepairoftheanglebisectors
ofthelinex24xy 5y2=0is
[2021,25JulyShift-II]
Options:
A.x23xy +y2=0
B.x2+4xy y2=0
C.x2+3xy y2=0
AB = (1+2)2+ (93)2= 45
BC = (31)2+ (89)2= 5
AC = (3+2)2+ (83)2= 50
(√50)2= (√45)2+ (√5)2
(AC)2= (AB)2+ (BC)2
B=90
ABCisrightangledtriangle.
Circumcentre=Mid-pointofhypotenuse
=Mid-pointofAC
=1
2,11
2
Mid-pointoflineBC =2,17
2
LinepassingthroughcircumcentreandbisectlineBCwillbe
y11
2=
17
211
2
21
2
x1
2
y11
2=3×2
3x1
2
y11
2=2 x 1
2
Itpassesthrough 0,α
2.
α
211
2=2 0 1
2α11 =41
2
α=11 2=9
α=9
( )
( )
( )
( )
( )
( )
( ) ( )
D.x23xy y2=0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question74
Twosidesofaparallelogramarealongthelines4x +5y =0and
7x +2y =0.Iftheequationofoneofthediagonalsoftheparallelogram
is11x +7y =9,thenotherdiagonalpassesthroughthepoint
[2021,27JulyShift-II]
Options:
A.(1,2)
B.(2,2)
C.(2,1)
D.(1,3)
Answer:B
Solution:
Solution:
Equationofanglebisectorofhomogeneousequationofpairofstraightlineax2+2hxy +by2is
x2y2
ab=xy
h
Forx24xy 5y2=0
a=1,h= 2,b= 5
So,equationofanglebisectoris
x2y2
1 (−5)=xy
2⇒ x2y2= 3xy⇒x2+3xy y2=0
So,combinedequationofanglebisectoris
x2+3xy y2=0.isx2+3xy y2=0.
Given,twosidesofparallelogramare
r4x +5y =0
7x +2y =0
and 7x +2y =0
Bothlinesarepassingthroughorigin.
Thus,pointA= (0,0)
-------------------------------------------------------------------------------------------------
Question75
LetAbeafixedpoint(0,6)andBbeamovingpoint(2t,0).LetM be
themid-pointofABandtheperpendicularbisectorofABmeetstheY -
axisatC.
Thelocusofthemid-pointPofM Cis
[2021,27Aug.Shift-1]
Options:
A.3x22y 6=0
B.3x2+2y 6=0
C.2x2+3y 9=0
D.2x23y +9=0
Answer:C
Solution:
Solution:
Theequationofdiagonalis11x +7y =9
PointDisthepointofintersectionof
4x +5y =0
and11x +7y =9
So,coordinateofD=5
3, 4
3
Also,pointBisthepointofintersectionof7x +2y =0and11x +7y =9
So,coordinateofpointB= 2
3,7
3
Weknowthat,diagonalsofparallelogrambisectseachother.LetPisthemiddlepointofBD.
So,coordinateof
P=
5
3+ 2
3
2,
4
3+7
3
2=1
2,1
2
Now,equationofdiagonalAC
y0=
1
20
1
20
(x0)
y=
1
2
1
2
xy=x
∴DiagonalACpassesthrough(2,2).
( )
( )
(( ) )( )
Given,A(0,6)andB(2t,0)
Mid-pointofAB =M(t,3)
Equationofperpendicularbisectorof
ABpassesthroughM.
y3=t
3(xt) ⋅⋅⋅⋅⋅⋅ (i)
So,C 0,3t2
3
IntersectionofEq.(i)onY-axis
C 0,3t2
3
( )
( )
-------------------------------------------------------------------------------------------------
Question76
LetABCbeatrianglewithA(−3,1)andACB =θ,0<θ<π
2.Ifthe
equationofthemedianthroughBis2x +y3=0andtheequationof
anglebisectorofCis7x 4y 1=0,thentan θisequalto
[2021,26Aug.Shift-I]
Options:
A.1 2
B.3 4
C.4/3
D.2
Answer:C
Solution:
Solution:
Letmid-pointofM Cis(h,k).
Then,(h,k) = t
2,3t2
6
h=t
2,k=3t2
6
Eliminatingt,weget
2h2=3(3k)
Locusof(h,k)
2x2=3(3y)
2x2+3y 9=0
( )
Given,theequationofmedianthroughB
i.e.BE :2x +y3=0
Equation,ofanglebisectorofCi.e.
CD :7x 4y =1
Since,EsatisfiestheequationofBE .
r2 a3
2+b+1
23=0
2a 6+b+16=0
2a +b=11 ⋅⋅⋅⋅⋅⋅ (i)
Since,CsatisfiesC(d)
7a 4b =1⋅⋅⋅⋅⋅⋅ (ii)
OnsolvingEqs.(i)and(ii),weget
a=3,b=5
SlopeofAC =2
3SlopeofCD =7
4
( ) ( )
-------------------------------------------------------------------------------------------------
Question77
Ifpandqarethelengthsoftheperpendicularsfromtheoriginonthe
lines,
xcosecα y sec α =k cot 2 αandx sin α +y cos α =k sin 2 α
respectively,thenk2isequalto
[2021,31Aug.Shift-1]
Options:
A.4p2+q2
B.2p2+q2
C.p2+2q2
D.2p2+q2p2+4q2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question78
LetA(1,0), B(6,2)andC 3
2,6 betheverticesofatriangleABC.IfPis
( )
tan θ
2=
2
37
4
1+14
12
=1
2
Now,tan θ =
2 tan θ
2
1tan2θ
2
=
21
2
11
4
=4
3
( ) | |
( )
( )
p=k cot 2 α
cosec2α+sec2α
q=k sin 2 α
sin2α+cos2α
p=
kcos 2 α
sin 2 α
sin2α+cos2α
sin2αcos2α
=k cos 2 α
sin 2 α
p=k
2cos 2 α
q=k sin 2 α
cos 2 α = (2p k)
sin 2 α = (qk)
sin2 +cos2 =1
4p2
k2+q2
k2=1
4p2+q2=k2
( )
( )
apointinsidethetriangleABCsuchthatthetrianglesAPC,APBand
BPChaveequalareas,thenthelengthofthelinesegmentPQ,whereQ
isthepoint 7
6, 1
3,is________.
[NAJan.7,2020(I)]
Answer:5
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question79
Thelocusofthemid-pointsoftheperpendicularsdrawnfrompointson
theline,x =2ytothelinex =yis:
[Jan.7,2020(II)]
Options:
A.2x 3y =0
B.5x 7y =0
C.3x 2y =0
D.7x 5y =0
Answer:B
Solution:
Solution:
( )
Pwillbecentroidof△ABC
P17
6,8
3PQ =(4)2+ (3)2=5
( )
Since,slopeofPQ =kα
h = 1
kα= h+
α=h+k
3
Also,2h = +βand
2k =α+β
2h =α+2k
-------------------------------------------------------------------------------------------------
Question80
LetCbethecentroidofthetrianglewithvertices(3,-1)(1,3)and(2,4).
LetPbethepointofintersectionofthelinesx +3y 1=0and
3x y+1=0.ThenthelinepassingthroughthepointsCandPalso
passesthroughthepoint:
[Jan.9,2020(I)]
Options:
A.(-9,-6)
B.(9,7)
C.(7,6)
D.(-9,-7)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question81
IfaABChasverticesA(−1,7), B(−7,1)andC(5, 5),thenits
orthocentrehascoordinates:
[Sep.03,2020(II)]
Options:
A. 3
5,3
5
B.(-3,3)
( )
α=2h 2k
From(i)and(ii),wehave
h+k
3=2(hk)
So,locusis6x 6y =x+y
5x =7y 5x 7y =0
Coordinatesofcentroides
C=x1+x2+x3
3,y1+y2+y3
3
=3+1+2
3,1+3+4
3= (2,2)
Thegivenequationoflinesare
x+3y 1=0...(i)
3x y+1=0...(ii)
Then,from(i)and(ii)
pointofintersectionP1
5,2
5
equationoflineDP
8x 11y +6=0
( )
( )
( )
C. 3
5, 3
5
D.(3,-3)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question82
AtriangleABClyinginthefirstquadranthastwoverticesasA(1,2)and
B(3,1).IfBAC =90,andar(∆ABC) = 55sq.units,thentheabscissa
ofthevertexCis:
[Sep.04,2020(I)]
Options:
A.1 + 5
B.1 +25
C.2 + 5
D.251ṁ
Answer:B
Solution:
Solution:
( )
mBC =6
12 = 1
2
∴EquationofASisy7=2(x+1)
y=2x +9...(i)
mAC =12
6= 2
∴EquationofBPisy1=1
2(x+7)
y=x
2+9
2...(ii)
Fromequs.(i)and(ii),
2x +9=x+9
2
4x +18 =x+9
3x =9x= 3
y=3
-------------------------------------------------------------------------------------------------
Question83
Iftheperpendicularbisectorofthelinesegmentjoiningthepoints
P(1,4)andQ(k,3)hasy-interceptequalto-4thenavalueofkis:
[Sep.04,2020(II)]
Options:
A.-2
B.-4
C.14
D.15
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Let∆ABCbeinthefirstquadrant
SlopeoflineAB = 1
2
SlopeoflineAC =2
LengthofAB = 5
Itisgiventhatar(∆ABC) = 55
1
2AB AC =55AC =10
∴CoordinateofvertexC= (1+10 cos θ,2+10 sin θ)
tan θ =2cos θ =1
5,sin θ =2
5
∴CoordinateofC= (1+25,2+45)
∴AbscissaofvertexCis1+25.
MidpointoflinesegmentPQbe k+1
2,7
2.
∴Slopeofperpendicularlinepassingthrough
(0,-4)and k+1
2,7
2=
7
2+4
k+1
20
=15
k+1
SlopeofPQ =43
1k=1
1k
15
1+k×1
1k= 1
1k2= 15 k= ±4
( )
( )
Question84
Iftheline,2x y+3=0isatadistance 1
5and 2
5fromthelines
4x 2y +α=0and6x 3y +β=0,respectively,thenthesumofall
possiblevalueofαandβis_______.
[NASep.05,2020(I)]
Answer:30
Solution:
-------------------------------------------------------------------------------------------------
Question85
Letf :RRbedefinedas
f(x) =
x5sin 1
x+5x2x<0
0 x =0
x5cos 1
x+λx2x>0.
Thevalueoflambdaforwhichf "(0)exists,is______.
[NASep.06,2020(I)]
Answer:5
Solution:
{( )
( )
L1:2x y+3=0
L1:4x 2y +α=02x y+α
2=0
L1:6x 3y +β=02x y+β
3=0
DistancebetweenL1andL2
α6
25=1
5α6=2
α=4,8
DistancebetweenL1andL3:
β9
35=2
5β9=6
β=15,3
Sumofallvalues = 4+8+15 +3=30
| | | |
| | | |
-------------------------------------------------------------------------------------------------
Question86
LetLdenotethelineinthexy-planewithxandyinterceptsas3and1
respectively.Thentheimageofthepoint(-1,-4)inthislineis:
[Sep.06,2020(II)]
Options:
A. 11
5,28
5
B. 29
5,8
5
C. 8
5,29
5
D. 29
5,11
5
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question87
Considerthesetofalllinespx +qy +r=0suchthat3p +2q +4r =0.
Whichoneofthefollowingstatementsistrue?
[Jan.9,2019(I)]
( )
( )
( )
( )
f(x) =
5x4sin 1
xx3cos 1
x+10x x <0
0x=0
5x4cos 1
x+x3sin 1
x+2λx x >0.
f′′(x) =
(20x3x)sin 1
x8x2cos 1
x+10 x <0
0x=0
(20x3x)cos 1
x+8x2sin 1
x+ x >0.
Now,f′′(0+) = f′′(0) =10 λ=5
{( ) ( )
( ) ( )
{( ) ( )
( ) ( )
Thelineinxy-planeis,
x
3+y=1x+3y 3=0
Letimageofthepoint(-1,-4)be(α,β),then
α+1
1=β+y
3= 2(−112 3)
10
α+1=β+4
3=16
5
α=11
5,β=28
5
Options:
A.Thelinesareconcurrentatthepoint 3
4,1
2.
B.Eachlinepassesthroughtheorigin.
C.Thelinesareallparallel.
D.Thelinesarenotconcurrent.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question88
Lettheequationsoftwosidesofatrianglebe3x 2y +6=0and
4x +5y 20 =0.Iftheorthocentreofthistriangleisat(1,1),thenthe
equationofitsthirdsideis:
[Jan.09,2019(II)]
Options:
A.122y 26x 1675 =0
B.122y +26x +1675 =0
C.26x +61y +1675 =0
D.26x 122y 1675 =0
Answer:D
Solution:
Solution:
( )
Thegivenequationsofthesetofalllines
px +qy +r=0...(i)
andgivenconditionis:
3p +2q +4r =0
3
4p+2
4q+r=0...(ii)
From(i)&(ii)weget:
x=3
4,y=1
2
Hencethesetoflinesareconcurrentandpassingthrough
thefixedpoint
3
4,1
2
( )
-------------------------------------------------------------------------------------------------
Question89
ApointPmovesontheline2x 3y +4=0.IfQ(1,4)andR(3, 2)are
fixedpoints,thenthelocusofthecentroidofPQRisaline:
[Jan.10,2019(I)]
Options:
A.withslope 3
2
B.paralleltox-axis
C.withslope 2
3
D.paralleltoy-axis
x1,3x1+6
2
Since,AH isperpendiculartoBC
Hence,mAH mBC = 1
20 4x2
51
x21×3
2= 1
15 4x2
5(x21)= 2
3
45 12x2= 10x2+10
2x2=35 x2=35
2
A35
2, 10
Since,BH isperpendiculartoCA.
Hence,mBH ×mCA = 1
3x1
2+31
x114
5= 1
(3x1+4)
2(x11)×4=5
6x1+8=5x15x1= 13 13,33
2
⇒EquationoflineABis
y+10 =
33
2+10
13 35 x35
2
⇒−61y 610 = 13x +455
2
⇒−122y 1220 = 26x +455
26x 122y 1675 =0
( )
( )
( )
( ) ( )
( )
( ) ( )
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question90
Iftheline3x +4y 24 =0intersectsthex-axisatthepointAandthey-
axisatthepointB,thentheincentreofthetriangleOAB,whereOisthe
origin,is:
[Jan.10,2019(I)]
Options:
A.(3,4)
B.(2,2)
C.(4,3)
D.(4,4)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
LetcentroidCbe(α,β)
wehaveα=1+3+h
3h= 4
β=42+k
3k= 2
butP(h,k)lieson2x 3y +4=0
2( 4) 3( 2) + 4=0
8+6+4=0
+2=0
Locus:6x 9y +2=0
y=6
9x+2
9∴itsslope = 6
9=2
3
Equationofthelineis:3x +4y =24or x
8+y
6=1
∴coordinatesofA,B&Oare(8,0), (0,6) & (0,0)respectively.
OA =8,OB =6&AB =10
∴Incentreof∆OABisgivenas:
I8×0+6×8+10 ×0
8+6+10 ,8×6+6×0+10 ×0
8+6+10 (2,2).
( )
Question91
Twoverticesofatriangleare(0,2)and(4,3).Ifitsorthocentreisatthe
origin,thenitsthirdvertexliesinwhichquadrant?
[Jan.10,2019(II)]
Options:
A.third
B.second
C.first
D.fourth
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question92
Twosidesofaparallelogramarealongthelines,x +y=3and
xy+3=0.Ifitsdiagonalsintersectat(2,4),thenoneofitsvertexis:
[Jan.10,2019(II)]
Options:
A.(3,5)
B.(2,1)
C.(2,6)
D.(3,6)
Answer:D
Solution:
Since,mQR ×mPH = 1
mQR = 1
mPH
mQR =y3
x4=0
y=3
mPQ ×mRH = 1
1
4×y
x= 1
y= 4x
x= 3
4
VertexRis 3
4,3
Hence,vertexRliesinsecondquadrant.
( )
Solution:
-------------------------------------------------------------------------------------------------
Question93
IfinaparallelogramABDC,thecoordinatesofA,BandCare
respectively(1,2),(3,4)and(2,5),thentheequationofthediagonalAD
is:
[Jan.11,2019(II)]
Options:
A.5x 3y +1=0
B.5x +3y 11 =0
C.3x 5y +7=0
D.3x +5y 13 =0
Answer:A
Solution:
Solution:
Since,xy+3=0andx+y=3areperpendicularlinesandintersectionpointofxy+3=0andx+y=3isP(0,3).
Mismid-pointofPR R(4,5)
LetS(x1,x1+3)andQ(x2,3x2)
Mismid-pointofSQ
x1+x2=4,x1+3+3x2=8
x1=3,x2=1
Then,thevertexDis(3,6)
Since,inparallelogrammidpointsofbothdiagonalsconsiders.
∴mid-pointofAD = mid-pointofBC
x1+1
2,y1+2
2=3+2
2,4+5
2
(x1,y1) = (4,7)
Then,equationofADis,
y7=27
14(x4)
y7=5
3(x4)
3y 21 =5x 20
5x 3y +1=0
( ) ( )
-------------------------------------------------------------------------------------------------
Question94
IfastraightlinepassingthroughthepointP(−3,4)issuchthatits
interceptedportionbetweenthecoordinateaxesisbisectedatP,then
itsequationis:
[Jan.12,2019(II)]
Options:
A.3x 4y +25 =0
B.4x 3y +24 =0
C.x y+7=0
D.4x +3y =0
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question95
Ifthestraightline,2x 3y +17 =0isperpendiculartothelinepassing
throughthepoints(7,17)and(15,β),thenβequals:
[Jan.12,2019(I)]
Options:
A. 35
3
B.-5
C.35
3
Since,PismidpointofMN
Then, 0+x
2= 3
x= 3×2x= 6
and y+0
2=4y+0=2×4y=8
HencerequiredequationofstraightlineM N is
x
6+y
8=14x 3y +24 =0
D.5
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question96
LetO(0,0)andA(0,1)betwofixedpoints.ThenthelocusofapointP
suchthattheperimeterofAOPis4,is:
[April8,2019(I)]
Options:
A.8x29y2+9y =18
B.9x28y2+8y =16
C.9x2+8y28y =16
D.8x2+9y29y =18
Answer:C
Solution:
Solution:
∵Equationofstraightlinecanberewrittenas,
y=2
3x+17
3
∴Slopeofstraightline = 2
3
Slopeoflinepassingthroughthepoints(7,17)and(15,β)
=β17
15 7=β17
8
Since,linesareperpendiculartoeachother.
Hence,m1m2= 1
2
3
β17
8= 1β=5
( ) ( )
LetpointP(h,k)
OA =1
So,OP +AP =3
h2+k2+h2+ (k1)2=3
-------------------------------------------------------------------------------------------------
Question97
SlopeofalinepassingthroughP(2,3)andintersectingtheline
x+y=7atadistanceof4unitsfromP,is:
[April9,2019(I)]
Options:
A. 1 5
1+ 5
B. 1 7
1+ 7
C. 71
7+1
D. 51
5+1
Answer:B
Solution:
Solution:
h2+ (k1)2=9+h2+k26 h2+k2
6 h2+k2=2k +8
9h2+8k28k 16 =0
Hence,locusofpointPis
9x2+8y28y 16 =0
Sincepointat4unitsfromP(2,3)willbe
A(4 cos θ +2,4 sin θ +3)andthispointwillsatisfytheequationoflinex+y=7
-------------------------------------------------------------------------------------------------
Question98
Apointonthestraightline,3x +5y =15whichisequidistantfromthe
coordinateaxeswilllieonlyin:
[April8,2019(I)]
Options:
A.4 th quadrant
B.1 st quadrant
C.1 st and2 nd quadrants
D.1 st ,2nd and4 th quadrants
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question99
Twoverticalpolesofheights,20mand80mstandapartonahorizontal
plane.Theheight(inmeters)ofthepointofintersectionofthelines
joiningthetopofeachpoletothefootoftheother,fromthishorizontal
planeis:
cos θ +sin θ =1
2
Onsquaring
sin 2 θ 3
42 tan θ
1+tan2θ= 3
4
3tan2θ+8 tan θ +3=0
tan θ =8±27
6(ignoring-vesign)
tan θ =8±27
6=1 7
1+ 7
Apointwhichisequidistantfromboththeaxesliesoneithery=xandy= x.
Since,pointliesontheline3x +5y =15
Thentherequiredpoint
3x +5y =15
x+y=0
x= 15
2
y=15
2 (x,y) = 15
2,15
2{2nd quadrant }
3x +5y =15
or xy=0
15
x=15
8
y=15
8 (x,y) = 15
8,15
8{1st quadrant }
Hence,therequiredpointliesin1st and2nd quadrant.
( )
( )
[April08,2019(II)]
Options:
A.15
B.18
C.12
D.16
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question100
Supposethatthepoints(h,k), (1,2)and(-3,4)lieonthelineL1.Ifa
lineL2passingthroughthepoints(h,k)and(4,3)isperpendicularon
L1,thenk
hequals:
[April08,2019(II)]
Options:
A.1
3
B.0
C.3
D.1
7
Answer:A
EquationsoflinesOBandACarerespectively
y=80
x1
x...(i)
x
x1
+y
20 =1...(ii)
∵equations(i)and(ii)intersecteachother
∴substitutethevalueofxfromequation(i)toequation(ii),weget
y
80 +y
20 =1
y+4y =80 y=16m
Hence,heightofintersectionpointis16m.
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question101
Ifthetwolinesx + (a1)y=1and2x +a2y=1(aR {0,1})are
perpendicular,thenthedistanceoftheirpointofintersectionfromthe
originis:
[April09,2019(II)]
Options:
A. 2
5
B. 2
5
C. 2
5
D. 2
5
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
(h,k), (1,2)and(-3,4)arecollinear
h k 1
1 2 1
341
=0 2h 4k +10 =0
h+2k =5...(i)
Now,mL1=42
31= 1
2mL2=2[∵L1L2]
Bythegivenpoints(h,k)and(4,3),
mL2=k3
h4k3
h4=2k3=2h 8
2h k=5...(ii)
From(i)and(ii)
h=3,k=1k
h=1
3
| |
∵twolinesareperpendicular⇒m1m2= 1
1
a1
2
a2= 1
2=a2(1a) a3a2+2=0
(a+1)(a2+2a +2) = 0a= 1
Henceequationsoflinesarex2y =1and2x +y=1
∴intersectionpointis 3
5,1
5
Now,distancefromorigin = 9
25 +1
25 =10
25 =2
5
( ) ( )
( )
Question102
Arectangleisinscribedinacirclewithadiameterlyingalongtheline
3y =x+7.Ifthetwoadjacentverticesoftherectangleare(-8,5)and
(6,5),thentheareaoftherectangle(insq.units)is:
[April09,2019(II)]
Options:
A.84
B.98
C.72
D.56
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question103
Linesaredrawnparalleltotheline4x 3y +2=0,atadistance 3
5from
theorigin.Thenwhichoneofthefollowingpointsliesonanyofthese
lines?
[April10,2019(II)]
Options:
A. 1
4,2
3
( )
Givensituation
∴perpendicularbisectorofABwillpassfromcentre.
∴equationofperpendicularbisectorx= 1
Hencecentreofthecircleis(-1,2)
Letco-ordinateofDis(α,β)
α+6
2= 1and β+5
2=2
α= 8andβ= 1, D (−8, 1)
|AD| = 6and|AB| = 14
Area = 6×14 =84
B. 1
4, 1
3
C. 1
4,1
3
D. 1
4, 2
3
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question104
Atrianglehasavertexat(1,2)andthemidpointsofthetwosides
throughitare(-1,1)and(2,3).Thenthecentroidofthistriangleis:
[April12,2019(II)]
Options:
A. 1,7
3
B. 1
3,2
C. 1
3,1
D. 1
3,5
3
Answer:B
Solution:
Solution:
( )
( )
( )
( )
( )
( )
( )
Letstraightlinebe4x 3y +α=0
∵distancefromorigin = 3
5
3
5=α
5α= ±3
Hence,lineis4x 3y +3=0or4x 3y 3=0
Clearly 1
4,2
3satisfies4x 3y +3=0
| |
( )
Fromthemid-pointformulaco-ordinatesofvertexBandCareB(−3,0)andC(3,4)
Now,centroidofthetriangle
G33+1
3,0+4+2
3G1
3,2
( ) ( )
-------------------------------------------------------------------------------------------------
Question105
AstraightlineLatadistanceof4unitsfromtheoriginmakespositive
interceptsonthecoordinateaxesandtheperpendicularfromtheorigin
tothislinemakesanangleof60withthelinex +y=0.Thenan
equationofthelineLis:
[April12,2019(II)]
Options:
A.x + 3y=8
B.(√3+1)x+ (√31)y=82
C.3x+y=8
D.Noneofthese
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question106
Theequationy =sin x sin(x+2) sin2(x+1)representsastraightline
lyingin:
∵perpendicularmakesanangleof60withthelinex+y=0
∴theperpendicularmakesanangleof15or75withx-axis
Hence,theequationoflinewillbe
x cos 75+y sin 75=4
or x cos 15+y sin 15=4
(√31)x+ (√3+1)y=82
or (√3+1)x+ (√31)y=82
[April12,2019(I)]
Options:
A.secondandthirdquadrantsonly
B.first,secondandfourthquadrant
C.first,thirdandfourthquadrants
D.thirdandfourthquadrantsonly
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question107
LettheorthocentreandcentroidofatrianglebeA(−3,5)andB(3,3)
respectively.IfCisthecircumcentreofthistriangle,thentheradiusof
thecirclehavinglinesegmentACasdiameter,is:
[2018]
Options:
A.210
B.3 5
2
C. 35
2
D.10
Answer:B
Considertheequation,y=sin x sin(x+2) sin2(x+1)
=1
2cos(−2) cos(2x +2)
21cos(2x +2)
2
=(cos 2) 1
2= sin21
BythegraphyliesinIIIandIVquadrant.
[ ]
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question108
Astraightlinethroughafixedpoint(2,3)intersectsthecoordinateaxes
atdistinctpointsPandQ.IfOistheoriginandtherectangleOPRQis
completed,thenthelocusofRis:
[2018]
Options:
A.2x +3y =xy
B.3x +2y =xy
C.3x +2y =6xy
D.3x +2y =6
Answer:B
Solution:
Solution:
SinceOrthocentreofthetriangleisA(−3,5)andcentriodofthetriangleisB(3,3),then
AB = 40 =210
Centroiddividesorthocentreandcircumcentreofthetriangleinratio2:1
AB :BC =2:1
N ow,AB =2
3AC
AC =3
2AB =3
2(210) AC =310
∴RadiusofcirclewithACasdiametre
=AC
2=3
210 =35
2
EquationofPQis
x
h+y
k=1...(i)
Since,(i)passesthroughthefixedpoint(2,3)Then,
2
h+3
k=1
-------------------------------------------------------------------------------------------------
Question109
InatriangleABC,coordianatesofAare(1,2)andtheequationsofthe
mediansthroughBandCarex +y=5andx =4respectively.Thenarea
ofABC(insq.units)is
[OnlineApril15,2018]
Options:
A.5
B.9
C.12
D.4
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question110
Thefootoftheperpendiculardrawnfromtheorigin,ontheline,
3x +y=λ(λ0)isP.Ifthelinemeetsx-axisatAandy-axisatB,then
theratioBP :PAis
[OnlineApril15,2018]
Options:
Then,thelocusofRis 2
x+3
y=1or3x +2y =xy.
MedianthroughCisx=4
SothexcoordinateofCis4.letC (4,y),thenthemidpointofA(1,2)andC(4,y)isDwhichliesonthemedian
throughB.
D1+4
2,2+y
2
Now, 1+4+2+y
2=5y=3
So,C (4,3)
Thecentroidofthetriangleistheintersectionofthemesians.Herethemediansx=4andx+4andx+y=5intersect
atG(4,1)
Theareaoftriangle∆ABC =3× AGC
=3×1
2[1(13) + 4(32) + 4(21)] = 9
( )
A.9:1
B.1:3
C.1:9
D.3:1
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question111
ThesidesofarhombusABCDareparalleltothelines,x y+2=0and
7x y+3=0.IfthediagonalsoftherhombusintersectatP(1,2)and
thevertexA(differentfromtheorigin)isonthey-axis,thenthe
ordinateofAis
[OnlineApril15,2018]
Options:
A.2
B. 7
4
C. 7
2
Let(x,y)befootofperpendiculardrawntothepoint(x1,y1)onthelineax+by +c=0
Relation: xx1
a=yy1
b=(ax1+by1+cz1)
a2+b2
Here(x1,y1) = (o,0)
givenlineis:3x +yλ=0
x0
3=y0
1=((3×0) + (1×0) λ)
32+12
x=
10andy=λ
10
HencefootofperpendicularP=
10,λ
10
LinemeetsX-axisatA=λ
3,0
andmeetsY-axisatB= (0,λ)
BP =
10
2+λ
10 λ2
BP =2
100 +81λ2
100
BP =90λ2
100
AP =λ
3
10
2+0λ
10
2
AP =λ2
900 +λ2
100
AP =10λ2
900
AP :AP =9:1
( )
( )
( ) ( )
( ) ( )
D. 5
2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question112
Asquare,ofeachside2,liesabovethex-axisandhasonevertexatthe
origin.Ifoneofthesidespassingthroughtheoriginmakesanangle30
withthepositivedirectionofthex-axis,thenthesumofthex-
coordinatesoftheverticesofthesquareis:
[OnlineApril9,2017]
Options:
A.231
B.232
C.32
D.31
Answer:B
Solution:
Solution:
LetthecoordinateAbe(0,c)
Equationsofthegivenlinesare
xy+2=0and
7x y+3=0
Weknowthatthediagonalsoftherhombuswillbeparalleltotheanglebisectorsofthetwogivenlines;
y=x+2andy=7x +3
∴equationofanglebisectorsisgivenas:
xy+2
2= ± 7x y+3
52
5x 5y +10 = ±(7x y+3)
∴Parallelequationsofthediagonalsare2x +4y 7=0and12x 6y +13 =0
∴slopesofdiagonalsare 1
2and2.
Now,slopeofthediagonalfromA(0,c)andpassingthroughP(1,2)is(2c)
2c=2c=0(notpossible)
2c=1
2c=5
2
∴ordinateofAis 5
2
-------------------------------------------------------------------------------------------------
Question113
Arayoflightisincidentalongalinewhichmeetsanotherline,
7x y+1=0,atthepoint(0,1).Therayisthenreflectedfromthis
pointalongtheline,y +2x =1.Thentheequationofthelineof
incidenceoftherayoflightis:
[OnlineApril10,2016]
Options:
A.41x 25y +25 =0
B.41x +25y 25 =0
C.41x 38y +38 =0
D.41x +38y 38 =0
Answer:C
Solution:
Solution:
ForA;
x
cos 30=y
sin 30=2
x= 3andy=1
ForC
x
cos 120=y
sin 120=2
x= 1,y= 3
ForB
x
cos 75=y
sin 75=22
x= 31andy= 3+1
Sum =232
Letslopeofincidentraybem
∴angleofincidence=angleofreflection
-------------------------------------------------------------------------------------------------
Question114
Twosidesofarhombusarealongthelines,x y+1=0and
7x y5=0.Ifitsdiagonalsintersectat(−1, 2),thenwhichoneof
thefollowingisavertexofthisrhombus?
[2016]
Options:
A. 1
3, 8
3
B. 10
3, 7
3
C.(-3,-9)
D.(-3,-8)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question115
( )
( )
m7
1+7m =27
114 =9
13
m7
1+7m =9
13or m7
1+7m = 9
13
13m 91 =9+63mor13m 91 = 963m
50m = 100or76m =82
m= 1
2or m=41
38
y1= 1
2(x0) or y1=41
38(x0)
i.ex+2y 2=0or 38y 38 41x =0
41x 38y +38 =0
| | | |
Letothertwosidesofrhombusare
xy+λ=0
and7x y+µ=0
thenOisequidistantfromABandDCandfromADandBC
| 1+2+1| = | 1+2+λ| λ= 3and|−7+25| = | 7+2+µ| µ=15
∴Othertwosidesarexy3=0and7x y+15 =0
∴Onsolvingtheeqnsofsidespairwise,wegettheverticesas
,(1,2), 7
3,4
3, (−3, 6) 1
3,8
3
( ) ( )
Ifavariablelinedrawnthroughtheintersectionofthelines x
3+y
4=1
and x
4+y
3=1,meetsthecoordinateaxesatAandB, (AB),thenthe
locusofthemidpointofABis:
[OnlineApril9,2016]
Options:
A.7xy =6(x+y)
B.4(x+y)228(x+y) + 49 =0
C.6xy =7(x+y)
D.14(x+y)297(x+y) + 168 =0
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question116
Thepoint(2,1)istranslatedparalleltothelineL :xy=4by23
units.IfthenewpointsQliesinthethirdquadrant,thentheequation
ofthelinepassingthroughQandperpendiculartoLis:
[OnlineApril9,2016]
Options:
A.x +y=2 6
B.2x +2y =1 6
C.x +y=336
D.x +y=326
Answer:D
Solution:
L1:4x +3y 12 =0
L2:3x +4y 12 =0
L1+λL2=0
(4x +3y 12) + λ(3x +4y 12) = 0
x(4+) + y(3+) 12(1+λ) = 0
PointA12(1+λ)
4+ ,0
PointB 0,12(1+λ)
3+
midpoint⇒h=6(1+λ)
4+ ... . (i)
k=6(1+λ)
3+ ... . (ii)
Eliminateλfrom(i)and(ii),then
6(h+k) = 7hk
6(x+y) = 7xy
( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question117
AstraightlinethroughoriginOmeetsthelines3y =10 4xand
8x +6y +5=0atpointsAandBrespectively.ThenOdividesthe
segmentABintheratio:
[OnlineApril10,2016]
Options:
A.2:3
B.1:2
C.4:1
D.3:4
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question118
xy=4
TofindequationofR
slopeofL=0is1
⇒slopeofQR = 1
LetQRisy=mx +c
y= x+c
x+yc=0
distanceofQRfrom(2,1)is23
23=|2+1c|
2
26= | 3c|
c3= ±26c=3±26
Linecanbex+y=3±26
x+y=326
Lengthofto4x +3y =10fromorigin(0,0)
P1=10
5=2
Lengthofto8x +6y +5=0fromorigin(0,0)
P2=5
10 =1
2
∵Linesareparalleltoeachother⇒ratiowillbe4:1or1:4
LetLbethelinepassingthroughthepointP(1,2)suchthatits
interceptedsegmentbetweentheco-ordinateaxesisbisectedatP.IfL1
isthelineperpendiculartoLandpassingthroughthepoint(−2,1),
thenthepointofintersectionofLandL1is:
[OnlineApril10,2015]
Options:
A. 4
5,12
5
B. 3
5,23
10
C. 11
20,29
10
D. 3
10,17
5
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question119
Thepoints 0,8
3, (1,3)and(82,30):
[OnlineApril10,2015]
Options:
A.formanacuteangledtriangle.
B.formarightangledtriangle.
C.lieonastraightline.
D.formanobtuseangledtriangle.
( )
( )
( )
( )
( )
EquationoflineL
x
2+y
4=1
2x +y=4...(i)
Forline
x2y = 4...(ii)
solvingequation(i)and(ii);wegetpointofintersection
45,12
5
( )
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question120
AstraightlineLthroughthepoint(3,-2)isinclinedatanangleof60to
theline3x+y=1.IfLalsointersectsthex-axis,thentheequationof
Lis:
[OnlineApril11,2015]
Options:
A.y + 3x+233=0
B.3y+x3+23=0
C.y 3x+2+33=0
D.3yx+3+23=0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question121
Thecircumcentreofatriangleliesattheoriginanditscentroidisthe
midpointofthelinesegmentjoiningthepoints(a2+1,a2+1)and
(2a, 2a), a0.Thenforanya,theorthocentreofthistrianglelieson
A 0,8
3B(1,3)C(89,30)
SlopeofAB =1
3
SlopeofBC =1
3
So,liesonsameline
( )
Giveneqnoflineisy+ 3x 1=0
y= 3x +1
(slope)m2= 3
Lettheotherslopebem1
tan 60= m1 (−3)
1+ (−3m1)
m1=0,m2= 3
SincelineLispassingthrough(3,-2)
y (−2) = +3(x3)
y+2= 3(x3)
y 3x +2+33=0
theline:
[OnlineApril11,2015]
Options:
A.y 2ax =0
B.y (a2+1)x=0
C.y +x=0
D.(a1)2x (a+1)2y=0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question122
GiventhreepointsP,Q,RwithP(5,3)andRliesonthex-axis.If
equationofRQisx 2y =2andPQisparalleltothex-axis,thenthe
centroidofPQRliesontheline:
[OnlineApril9,2014]
Options:
A.2x +y9=0
B.x 2y +1=0
C.5x 2y =0
D.2x 5y =0
Answer:D
Solution:
Solution:
Circumcentre = (0,0)
Centroid = (a+1)2
2,(a1)2
2
Weknowthecircumcentre(O),
Centroid(G)andorthocentre(H)ofatrianglelieonthelinejoiningtheOandG.
Also, H G
GO =2
1
⇒Coordinateoforthocentre = 3(a+1)2
2,3(a1)2
2
Now,thesecoordinatessatisfieseqngiveninoption(d)Hence,requiredeqnoflineis
(a1)2x (a+1)2y=0
( )
-------------------------------------------------------------------------------------------------
Question123
Ifalineinterceptedbetweenthecoordinateaxesistrisectedatapoint
A(4,3),whichisnearertox-axis,thenitsequationis:
[OnlineApril12,2014]
Options:
A.4x 3y =7
B.3x +2y =18
C.3x +8y =36
D.x +3y =13
Answer:B
Solution:
Solution:
EquationofRQisx2y =2...(i)
aty=0,x=2[R(2,0)]
asPQisparalleltox,y-coordinatesofQisalso3Puttingvalueofyinequation(i),weget
Q(8,3)
Centroidof∆PQR =8+5+2
3,3+3
3= (5,2)
Only(2x 5y =0)satisfythegivenco-ordinates.
( )
AdividesCBin2:1
4=1×0+2×a
1+2=2a
3
a=6⇒coordinateofBisB(6,0)
3=1×b+2×0
1+2=b
3
b=9andC(0,9)
Slopeoflinepassingthrough(6,0),(0,9)
slope,m=9
6= 3
2
Equationofliney0=3
2(x6)
2y = 3x +18
( )
( )
-------------------------------------------------------------------------------------------------
Question124
Leta,b,candd benon-zeronumbers.Ifthepointofintersectionofthe
lines4ax +2ay +c=0and5bx +2by +d =0liesinthefourthquadrant
andisequidistantfromthetwoaxesthen
[2014]
Options:
A.3bc 2ad =0
B.3bc +2ad =0
C.2bc 3ad =0
D.2bc +3ad =0
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question125
LetPSbethemedianofthetriangleverticesP(2,2), Q(6, 1)and
R(7,3).Theequationofthelinepassingthrough(1,-1)andparallelto
PSis:
[2014]
Options:
A.4x +7y +3=0
B.2x 9y 11 =0
C.4x 7y 11 =0
3x +2y =18
Givenlinesare
4ax +2ay +c=0
5bx +2by +d=0
Thepointofintersectionwillbe
x
2ad 2bc =y
4ad 5bc =1
8ab 10ab
x=2(ad bc)
2ab =bc ad
ab
y=5bc 4ad
2ab =4ad 5bc
2ab
∵Pointofintersectionisinfourthquadrantsoxispositiveandyisnegative.
Alsodistancefromaxesissame
Sox= y
( ∵distancefromx-axisis−yasyisnegative)
bc ad
ab =5bc 4ad
2ab 3bc 2ad =0
D.2x +9y +7=0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question126
IfalineLisperpendiculartotheline5x y=1,andtheareaofthe
triangleformedbythelineLandthecoordinateaxesis5,thenthe
distanceoflineLfromthelinex +5y =0is:
[OnlineApril19,2014]
Options:
A. 7
5
B. 5
13
C. 7
13
D. 5
7
Answer:B
Solution:
Solution:
LetP,Q,R,betheverticesof∆PQR
SincePSisthemedian
Sismid-pointofQR
So,S=7+6
2,31
2=13
2,1
Now,slopeofPS =21
213
2
= 2
9
Since,requiredlineisparalleltoPSthereforeslopeofrequiredline=slopeofPS
Now,eqn.oflinepassingthrough(1,-1)andhavingslope− 2
9is
y (−1) = 2
9(x1)
9y +9= 2x +22x +9y +7=0
( ) ( )
LetequationoflineL,perpendicularto5x y=1bex+5y =c
-------------------------------------------------------------------------------------------------
Question127
Ifthethreedistinctlinesx +2ay +a=0,x+3by +b=0and
x+4ay +a=0areconcurrent,thenthepoint(a,b)liesona:
[OnlineApril12,2014]
Options:
A.circle
B.hyperbola
C.straightline
D.parabola
Answer:C
Solution:
Solution:
Giventhatareaof∆AOBis5.
Weknow
{area,A=1
2[x1(y2y3) + x2(y3y1) + x3(y1y2)]
5=1
2cc
5
(x1,y1) = (10,0) (x3,y3) = 0,c
5
(x2,y2) = (c,0)
c= ±50
DistancebetweenLandlinex+5y =0is
d=±50 0
12+52=50
26 =5
13
}
[ ( ) ]
(( ) )
||
x+2ay +a=0.. . (i)
x+3by +b=0.. . (ii)
x+4ay +a=0.. . (iii)
Subtractingequation(iii)from(i)
2ay =0
ay =0=y=0
Puttingvalueofyinequation(i),weget
x+0+a=0
x= a
Puttingvalueofxandyinequation(ii),weget
a+b=0a=b
Thus,(a,b)liesonastraightline
-------------------------------------------------------------------------------------------------
Question128
Thebaseofanequilateraltriangleisalongthelinegivenby3x +4y =9.
Ifavertexofthetriangleis(1,2),thenthelengthofasideofthe
triangleis:
[OnlineApril11,2014]
Options:
A. 23
15
B. 43
15
C. 43
5
D. 23
5
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question129
Thex-coordinateoftheincentreofthetrianglethathasthe
coordinatesofmidpointsofitssidesas(0,1)(1,1)and(1,0)is:
Shortestdistanceofapoint(x1,y1)fromlineax +by =cisd=ax1+by1c
a2+b2
NowshortestdistanceofP(1,2)from3x +4y =9isPC =d=3(1) + 4(2) 9
32+42=2
5
Giventhat∆APBisanequilateraltriangleLet'a'beitssidethenPB =a,CB =a
2
Now,In∆PCB, (PB)2= (PC)2+ (CB)2
(ByPythagorastheoresm)
a2=2
5
2+a2
4
a2a4
4=4
25 3a2
4=4
25
a2=16
75 a=16
75 =4
53×3
3=43
15
∴LengthofEquilateraltriangle(a) = 43
15
||
||
( )
[2013]
Options:
A.2 + 2
B.2 2
C.1 + 2
D.1 2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question130
AlightrayemergingfromthepointsourceplacedatP(1,3)isreflected
atapointQintheaxisofx.Ifthereflectedraypassesthroughthepoint
R(6,7),thentheabscissaofQis:
[OnlineApril9,2013]
Options:
A.1
B.3
C. 7
2
D. 5
2
Fromthefigure,wehave
a=2,b=22,c=2
x1=0,x2=0,x3=2
Now,x-co-ordinateofincentreisgivenas
ax1+bx2+cx3
a+b+c
x-coordinateofincentre
=2×0+22.0 +2.2
2+2+22=2
2+ 2=2 2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question131
Ifthethreelinesx 3y =p,ax +2y =qandax +y=rformaright-
angledtrianglethen:
[OnlineApril9,2013]
Options:
A.a29a +18 =0
B.a26a 12 =0
C.a26a 18 =0
D.a29a +12 =0
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
LetabcissaofQ=x
Q= (x,0)
tan θ =07
x6,tan(180θ) = 03
x1
Now,tan(180θ) = tan θ
3
x1=7
x6x=5
2
Sincethreelinesx3y =p,
ax +2y =qandax +y=r
formarightangledtriangle
∴productofslopesofanytwolines = 1
Supposeax +2y =qandx3y =paretoeachother.
a
2×1
3= 1a=6
Now,consideroptiononebyonea=6satisfiesonlyoption(a)
∴Requiredanswerisa29a +18 =0
Question132
Arayoflightalongx + 3y= 3getsreflecteduponreachingx-axis,
theequationofthereflectedrayis
[2013]
Options:
A.y =x+ 3
B.3y=x 3
C.y = 3x 3
D.3y=x1
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question133
Ifthex-interceptofsomelineLisdoubleasthatoftheline,
3x +4y =12andthey-interceptofLishalfasthatofthesameline,
thentheslopeofLis:
[OnlineApril22,2013]
Options:
A.-3
B.3
8
C.3
2
D.3
16
SupposeB(0,1)beanypointongivenlineandco-ordinateofAis(√3,0).So,equationof
Reflectedrayis 10
0 3=y0
x 3
3y=x 3
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question134
Iftheextremitiesofthebaseofanisoscelestrianglearethepoints
(2a,0)and(0,a)andtheequationofoneofthesidesisx =2a,thenthe
areaofthetriangle,insquareunits,is:
[OnlineApril23,2013]
Options:
A. 5
4a2
B. 5
2a2
C. 25a2
4
D.5a2
Answer:B
Solution:
Solution:
Givenline3x +4y =12canberewrittenas
3x
12 +4y
12 =1x
4+y
3=1
x-intercept = 4andy-intercept = 3
Lettherequiredlinebe
L:x
a+y
b=1where
a=x-interceptandb=y-intercept
Accordingtothequestion
a=4×2=8andb=32
∴Requiredlineis x
8+2y
3=1
3x +16y =24
y=3
16 x+24
16
Hence,requiredslope = 3
16 .
Lety-coordinateofC=b
C= (2a,b)
-------------------------------------------------------------------------------------------------
Question135
Letθ1betheanglebetweentwolines2x +3y +c1=0and
x+5y +c2=0andθ2betheanglebetweentwolines2x +3y +c1=0
andx+5y +c3=0,wherec1,c2,c3areanyrealnumbers:
Statement-1:Ifc2andc3areproportional,thenθ1=θ2.
Statement-2:θ1=θ2forallc2andc3
[OnlineApril23,2013]
Options:
A.Statement-1istrue,Statement-2istrue;Statement-2isacorrectexplanationofStatement-
1.
B.Statement-1istrue,Statement-2istrue;Statement-2isnotacorrectexplanationof
Statement-1.
C.Statement-1isfalse;Statement-2istrue.
D.Statement-1istrue;Statement-2isfalse.
Answer:A
Solution:
AB =4a2+a2= 5a
Now,AC =BC b=4a2+ (ba)2
b2=4a2+b2+a22ab
2ab =5a2b=5a
2
C=2a,5a
2
Henceareaofthetriangle
=1
2
2a 0 1
0 a 1
2a 5a
21
=1
2
2a 0 1
0 a 1
05a
20
=1
2×2a 5a
2= 5a2
2
Sinceareaisalways+ve,hencearea
=5a2
2sq unit
( )
| | | |
( )
Solution:
-------------------------------------------------------------------------------------------------
Question136
LetA(−3,2)andB(−2,1)betheverticesofatriangleABC.Ifthe
centroidofthistriangleliesontheline3x +4y +2=0,thenthevertex
Cliesontheline:
[OnlineApril25,2013]
Options:
A.4x +3y +5=0
B.3x +4y +3=0
C.4x +3y +3=0
D.3x +4y +5=0
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question137
IftheimageofpointP(2,3)inalineLisQ(4,5),thentheimageof
pointR(0,0)inthesamelineis:
[OnlineApril25,2013]
Options:
A.(2,2)
Twolines−x+5y +c2=0and−x+5y +c3=0areparalleltoeachother.Hencestatement-1istrue,statement2is
trueandstatement-2isthecorrectexplanationofstatement-1.
LetC= (x1,y1)
Centroid,E=x15
3,y1+3
3
Sincecentroidliesontheline
3x +4y +2=0
3x15
3+4y1+3
3+2=0
3x1+4y1+3=0
Hencevertex(x1,y1)liesontheline
3x +4y +3=0
( )
( ) ( )
B.(4,5)
C.(3,4)
D.(7,7)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question138
Iftheline2x +y=kpassesthroughthepointwhichdividestheline
segmentjoiningthepoints(1,1)and(2,4)intheratio3 :2,thenk
equals:
[2012]
Options:
A. 29
5
B.5
C.6
D. 11
5
Answer:C
Solution:
Solution:
Mid-pointofP(2,3)andQ(4,5) = (3,4)SlopeofPQ =1
SlopeofthelineL= 1
Mid-point(3,4)liesonthelineL.
EquationoflineL
y4= 1(x3) x+y7=0
LetimageofpointR(0,0)beS(x1,y1)
Mid-pointofRS =x1
2,y1
2
Mid-point x1
2,y1
2
liesontheline(i)
x1+y1=14
SlopeofRS =y1
x1
SinceRSlineL
y1
x1
× (−1) = 1
x1=y1
From(ii)and(iii),
x1=y1=7
HencetheimageofR= (7,7)
( )
( )
LetthepointsbeA(1,1)andB(2,4).LetpointCdivideslineABintheratio3:2.So,bysectionformulawehave
-------------------------------------------------------------------------------------------------
Question139
Ifthestraightlinesx +3y =4,3x +y=4andx +y=0formatriangle,
thenthetriangleis
[OnlineMay7,2012]
Options:
A.scalene
B.equilateraltriangle
C.isosceles
D.rightangledisosceles
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question140
Iftwoverticalpoles20mand80mhighstandapartonahorizontal
plane,thentheheight(inm)ofthepointofintersectionofthelines
joiningthetopofeachpoletothefootofotheris
[OnlineMay7,2012]
Options:
A.16
B.18
C.50
D.15
Answer:A
C=3×2+2×1
3+2,3×4+2×1
3+2=8
5,14
5
SinceLine2x +y=kpassesthroughC8
5,14
5
2×8
5+14
5=kk=6
( ) ( )
( )
LetequationofAB :x+3y =4
LetequationofBC :3x +y=4
LetequationofCA :x+y=0
Now,Bysolvingtheseequationsweget
A= (−2,2), B= (1,1)and C = (2, 2)
Now, AB = 9+1= 10
BC = 1+9= 10
and CA = 16 +16 = 32
Since,lengthofABandBCaresamethereforetriangleisisosceles.
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question141
Thepointofintersectionofthelines(a3+3)x+ay +a3=0and
(a5+2)x+ (a+2)y+2a +3=0(areal)liesonthey-axisfor
[OnlineMay7,2012]
Options:
A.novalueofa
B.morethantwovaluesofa
C.exactlyonevalueofa
D.exactlytwovaluesofa
Answer:A
Solution:
Solution:
Weputonepoleatorigin.
BC =80m,OA =20m
LineOCandABintersectatM.
Tofind:LengthofM N .
EqnofOC :y=80 0
a0x
y=80
ax...(i)
EqnofAB :y=20 0
0a(xa)
y=20
a(xa)...(ii)
AtM: (i) = (ii)
80
ax=20
a(xa)
80
ax=20
ax+20 x=a
5
y=80
a×a
5=16
( )
( )
Givenequationoflinesare
(a3+3)x+ay +a3=0and(a5+2)x+ (a+2)y+2a +3=0(areal)
Sincepointofintersectionoflinesliesony-axis.
∴Putx=0ineachequation,weget
ay +a3=0and(a+2)y+2a +3=0
Onsolvingtheseweget
-------------------------------------------------------------------------------------------------
Question142
Ifthepoint(1,a)liesbetweenthestraightlinesx +y=1and
2(x+y) = 3thenaliesininterval
[OnlineMay12,2012]
Options:
A. 3
2,
B. 1,3
2
C.(−,0)
D. 0,1
2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question143
( )
( )
( )
(a+2)(a3) a(2a +3) = 0
a2a62a23a =0
⇒−a24a 6=0a2+4a +6=0
a=4± 16 24
2=4± 8
2
(notreal)
Thisshowsthatthepointofintersectionofthelinesliesonthey-axisfornovalueof'a'.
Since,(1,a)liesbetweenx+y=1and2(x+y) = 3
∴Putx=1in2(x+y) = 3
Wegettherangeofy.Thus,
2(1+y) = 3y=3
21=1
2
Thus'a'liesin 0,1
2
( )
Iftwoverticesofatriangleare(5,-1)and(-2,3)anditsorthocentreisat
(0,0),thenthethirdvertexis
[OnlineMay12,2012]
Options:
A.(4,-7)
B.(-4,-7)
C.(-4,7)
D.(4,7)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question144
LetLbetheliney =2x,inthetwodimensionalplane.
Statement1:Theimageofthepoint(0,1)inListhepoint 4
5,3
5
Statement2:Thepoints(0,1)and 4
5,3
5lieonoppositesidesofthe
lineLandareatequaldistancefromit.
[OnlineMay19,2012]
Options:
( )
( )
Letthethirdvertexof∆ABCbe(a,b).
Orthocentre = H(0,0)
LetA(5, 1)andB(−2,3)beothertwoverticesof∆ABC.Now,(SlopeofAH ) × (SlopeofBC ) = 1
10
50
b3
a+2= 1
b3=5(a+2)...(i)
Similarly,
(SlopeofBH ) × (SlopeofAC ) = 1
3
2×b+1
a5= 1
3b +3=2a 10
3b 2a +13 =0...(ii)
Onsolvingequations(i)and(ii)weget
a= 4,b= 7
Hence,thirdvertexis(-4,-7)
( ) ( )
( ) ( )
A.Statement1istrue,Statement2isfalse.
B.Statement1istrue,Statement2istrue,Statement2isnotacorrectexplanationfor
Statement1.
C.Statement1istrue,Statement2istrue,Statement2isacorrectexplanationforStatement1
D.Statement1isfalse,Statement2istrue.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question145
Thelineparalleltox-axisandpassingthroughthepointofintersection
oflinesax +2by +3b =0andbx 2ay 3a =0where(a,b) (0,0)is
[OnlineMay26,2012]
Options:
A.abovex-axisatadistance2 3fromit
B.abovex-axisatadistance3 2fromit
C.belowx-axisatadistance3 2fromit
D.belowx-axisatadistance2 3fromit
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question146
Statement-1
LetP(x1,y1)betheimageof(0,1)withrespecttotheline2x y=0then
x1
2=y11
1=4(0) + 2(1)
5
x1=4
5,y1=3
5
Thus,statement-1istrue.
Also,statement-2istrueandcorrectexplanationforstatement-1
Givenlinesare
ax +2by +3b =0andbx 2ay 3a =0
Since,requiredlineis||tox-axis
x=0Weputx=0ingivenequation,weget
2by = 3b y= 3
2
Thisshowsthattherequiredlineisbelowx-axisatadistanceof 3
2fromit.
Considerthestraightlines
L1:xy=1
L2:x+y=1
L3:2x +2y =5
L4:2x 2y =7
Thecorrectstatementis
[OnlineMay26,2012]
Options:
A.L1|L4,L2|L3,L1intersectL4
B.L1L2,L1|L3,L1intersectL2
C.L1L2,L2|L3,L1intersectL4
D.L1L2,L1L3,L2intersectL4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question147
Ifa,b,cRand1isarootofequationax2+bx +c=0,thenthecurve
y=4ax2+3bx +2c,a0intersectx-axisat
[OnlineMay26,2012]
Options:
A.twodistinctpointswhosecoordinatesarealwaysrationalnumbers
B.nopoint
C.exactlytwodistinctpoints
Considerthelines
L1:xy=1
L2:x+y=1
L3:2x +2y =5
L4:2x 2y =7
L1L2iscorrectstatement
( ∵Productoftheirslopes = 1)
L1L3isalsocorrectstatement
( ∵Productoftheirslopes = 1)
Now,L2:x+y=1
L4:2x 2y =7
2x 2(1x) = 7
2x 2+2x =7
x=9
4andy=5
4
Hence,L2intersectsL4
D.exactlyonepoint
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question148
IfA(2, 3)andB(−2,1)aretwoverticesofatriangleandthirdvertex
movesontheline2x +3y =9,thenthelocusofthecentroidofthe
triangleis:
[2011RS]
Options:
A.x y=1
B.2x +3y =1
C.2x +3y =3
D.2x 3y =1
Answer:B
Solution:
Solution:
Givenax2+bx +c=0
ax2= bx c
Now,consider
y=4ax2+3bx +2c
=4[−bx c] + 3bx +2c
= 4bx 4c +3bx +2c = bx 2c
Since,thiscurveintersectsx-axis
∴puty=0,weget
bx 2c =0 bx =2c
x=2c
b
Thus,givencurveintersectsx-axisatexactlyonepoint.
Centroid(h,k) = 22+α
3,3+1+β
3
α=3h
β2=3k
β=3k +2
Thirdvertex(α,β)liesontheline
2x +3y =9
+ =9
2(3h) + 3(3k +2) = 9
( )
-------------------------------------------------------------------------------------------------
Question149
Thelinesx +y= | a|andax y=1intersecteachotherinthefirst
quadrant.Thenthesetofallpossiblevaluesofaintheinterval:
[2011RS]
Options:
A.(0,)
B.[1,)
C.(−1,)
D.(-1,1)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question150
2h +3k =1
2x +3y =1
Giventhatx+y= | a|andax y=1
CaseI:Ifa>0
x+y=a...(i)
ax y=1...(ii)
Onaddingequations(i)and(ii),weget
x(1+a) = 1+ax=1
y=a-1
Sincegiventhatintersectionpointliesinfirstquadrant
So,a10
a1
a [1,)
CaseII:Ifa<0
x+y= a...(iii)
ax y=1...(iv)
Onaddingequations(iii)and(iv),weget
x(1+a) = 1a
x=1a
1+a>0a1
a+1<0
Sincea1<0
a+1>0
a> 1...(v)
0
1>
y= a1a
1+a>0=aa21+a
1+a>0
a2+1
a+1>0a2+1
a+1<0
Sincea2+1>0
a+1<0
a< 1...(vi)
From(v)and(vi),aφ
Hence,Case-IIisnotpossible.
So,correctanswerisa [1,)
( )
ThelinesL1:yx=0andL2:2x +y=0intersectthelineL3:y+2=0
atPandQrespectively.ThebisectoroftheacuteanglebetweenL1and
L2intersectsL3atR.
Statement-1:TheratioPR :RQequals22: 5
Statement-2:Inanytriangle,bisectorofanangledividesthetriangle
intotwosimilartriangles.
[2011]
Options:
A.Statement-1istrue,Statement-2istrue;Statement-2isnotacorrectexplanationfor
Statement-1.
B.Statement-1istrue,Statement-2isfalse.
C.Statement-1isfalse,Statement-2istrue.
D.Statement-1istrue,Statement-2istrue;Statement-2isacorrectexplanationfor
Statement-1.
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question151
Thelinesp(p2+1)xy+q=0and(p2+1)2x+ (p2+1)y+2q =0are
perpendiculartoacommonlinefor:
L1:yx=0
L2:2x +y=0
L3:y+2=0
OnsolvingtheequationoflineL1andL2wegettheirpointofintersection(0,0)i.e.,originO.
OnsolvingtheequationoflineL1andL3,wegetP= (−2, 2).
Similarly,solvingequationoflineL2andL3,wegetQ= (−1, 2)
Weknowthatbisectorofanangleofatriangle,dividetheoppositesidethetriangleintheratioofthesidesincludingthe
angle[AngleBisectorTheoremofaTriangle]
PR
RQ =OP
OQ =(−2)2+ (−2)2
(−1)2+ (−2)2=22
5
∴Statement1istruebut∠OPR OQR
So∆OPRand∆OQRnotsimilar
∴Statement2isfalse
[2009]
Options:
A.exactlyonevaluesofp
B.exactlytwovaluesofp
C.morethantwovaluesofp
D.novalueofp
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question152
Theshortestdistancebetweentheliney x=1andthecurvex =y2is:
[2009]
Options:
A. 23
8
B. 32
5
C. 3
4
D. 32
8
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Giventhatthelinesp(p2+1)xy+q=0and(p2+1)2x+ (p2+1)y+2q =0areperpendiculartoacommonlinethen
theselinesmustbeparalleltoeachother,
m1=m2
p(p2+1)
1= (p2+1)2
p2+1
(p2+1)2(p+1) = 0
p= 1
pcanhaveexactlyonevalue.
Let(a2,a)bethepointofshortestdistanceonx=y2Thendistancebetween(a2,a)andlinexy+1=0isgivenby
D=ax1+by1+c
a2+b2=|a2a+1|
2=1
2a1
2
2+3
4
Itisminwhena=1
2andDmin =3
42=32
8
|| | ( ) |
Question153
TheperpendicularbisectorofthelinesegmentjoiningP(1,4)and
Q(k,3)hasy-intercept4.Thenapossiblevalueofkis
[2008]
Options:
A.1
B.2
C.-2
D.-4
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question154
LetA(h,k), B(1,1)andC(2,1)betheverticesofarightangledtriangle
withACasitshypotenuse.Iftheareaofthetriangleislsquareunit,
thenthesetofvalueswhich'k'cantakeisgivenby
[2007]
Options:
A.{−1,3}
B.{−3, 2}
C.{1,3}
D.{0,2}
Answer:A
Solution:
SlopeofPQ =34
k1=1
k1
∴SlopeofperpendicularbisectorofPQ = (k1)
Also,midpointofPQ k+1
2,7
2.
∴EquationofperpendicularbisectorofPQis
y7
2= (k1)xk+1
2
2y 7=2(k1)x (k21)
2(k1)x2y + (8k2) = 0
Giventhaty-intercept
=8k2
2= 4
8k2= 8 or k2=16 k= ±4
( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question155
LetP = (−1,0), Q= (0,0)andR = (3,33)bethreepoint.Theequation
ofthebisectoroftheanglePQRis
[2007]
Options:
A. 3
2x+y=0
B.x + 3y =0
C.3x+y=0
D.x +3
2y=0
Answer:C
Solution:
Solution:
Given:A(1,k), B(1,1)andC(2,1)areverticesofarightangledtriangleandareaof∆ABC =1squareunit
Weknowthat,areaofrightangledtriangle
=1
2×BC ×AB =1=1
2(a) (k1)
⇒±(k1) = 2k= 1,3
Given:ThecoordinatesofpointsP,Q,Rare(−1,0),(0,0), (3,33)respectively.
SlopeofQR =y2y1
x2x1
=33
3
tan θ = 3θ=π
3
RQX =π
3
RQP =ππ
3=
3
LetQMbisectsthe∠PQR,
-------------------------------------------------------------------------------------------------
Question156
Ifoneofthelinesofmy2+ (1m2)xy mx2=0isabisectoroftheangle
betweenthelinesxy =0,thenmis
[2007]
Options:
A.1
B.2
C.1
2
D.-2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question157
If(a,a2)fallsinsidetheanglemadebythelinesy =x
2,x >0and
y=3x,x>0,thenabelongto
[2006]
Options:
A. 0,1
2
B.(3,)
( )
M QR =π
3 M QX =
3
∴SlopeofthelineQM =tan
3= 3
EquationoflineQM is(y0) = 3(x0)
y= 3x 3x+y=0
Fromfigureequationofbisectorsoflines,xy =0arey= ±x
∴Puty= ±xinthegivenequation
my2+ (1m2)xy mx2=0
mx2± (1m2)x2mx2=0
1m2=0m= ±1
C. 1
2,3
D. 3, 1
2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question158
AstraightlinethroughthepointA(3,4)issuchthatitsintercept
betweentheaxesisbisectedatA.Itsequationis
[2006]
Options:
A.x +y=7
B.3x 4y +7=0
C.4x +3y =24
D.3x +4y =25
Answer:C
Solution:
Solution:
( )
( )
ClearlyforpointP,
a23a <0anda2a
2>0
1
2<a<3
-------------------------------------------------------------------------------------------------
Question159
Ifavertexofatriangleis(1,1)andthemidpointsoftwosidesthrough
thisvertexare(-1,2)and(3,2)thenthecentroidofthetriangleis
[2005]
Options:
A. 1,7
3
B. 1
3,7
3
C. 1,7
3
D. 1
3,7
3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question160
Thelineparalleltothex-axisandpassingthroughtheintersectionof
thelinesax +2by +3b =0andbx 2ay 3a =0,where(a,b) (0,0)is
[2005]
( )
( )
( )
( )
AisthemidpointofPQ
a+0
2=3,0+b
2=4a=6,b=8
∴Equationoflineis x
6+y
8=1
or4x +3y =24
Vertexoftriangleis(1,1)andmidpointofsidesthroughthisvertexis(-1,2)and(3,2)
Co-ordinateofBis(x,y)
co-ordinatesofBis 1+x
2= 1,1+y
2=1: : ((x,y) : (−3,3))
Similarly,co-ordinateofCcomesouttobe(5,3)
Thuscentroidis, 13+5
3,1+3+3
31,7
3...(hint:usingformulaofcentroid)
( )
( )
Options:
A.belowthex-axisatadistanceof 3
2fromit
B.belowthex-axisatadistanceof 2
3fromit
C.abovethex-axisatadistanceof 3
2fromit
D.abovethex-axisatadistanceof 2
3fromit
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question161
Theequationofthestraightlinepassingthroughthepoint(4,3)and
makinginterceptsontheco-ordinateaxeswhosesumis-1is
[2004]
Options:
A. x
2y
3=1and x
2+y
1=1
B. x
2y
3= 1and x
2+y
1= 1
C. x
2+y
3=1and x
2+y
1=1
D. x
2+y
3= 1and x
2+y
1= 1
Answer:A
Solution:
Solution:
Theeqn.oflinepassingthroughtheintersectionoflinesax +2by +3b =0and
bx 2ay 3a =0isax +2by +3b +λ(bx 2ay 3a) = 0
(a+)x+ (2b 2aλ)y+3b 3λa =0
Requiredlineisparalleltox-axis.
a+ =0λ= ab
ax +2by +3b a
b(bx 2ay 3a) = 0
ax +2by +3b ax +2a2
by+3a2
b=0
y 2b +2a2
b+3b +3a2
b=0
y2b2+2a2
b= 3b2+3a2
b
y=3(a2+b2)
2(b2+a2)=3
2
Soitis32unitsbelowx-axis.
( )
( ) ( )
-------------------------------------------------------------------------------------------------
Question162
LetA(2, 3)andB(−2,3)beverticesofatriangleABC.
Ifthecentroidofthistrianglemovesontheline2x +3y =1,thenthe
locusofthevertexCistheline
[2004]
Options:
A.3x 2y =3
B.2x 3y =7
C.3x +2y =5
D.2x +3y =9
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question163
Ifoneofthelinesgivenby6x2xy +4cy2=0is3x +4y =0,thenc
equals
[2004]
Options:
A.-3
B.1
Lettherequiredlinebe x
a+y
b=1....(i)
thena+b= 1b= a1....(ii)
(i)passesthrough(4,3), 4
a+3
b=1
4b +3a =ab....(iii)
Puttingvalueofbfrom(ii)in(iii),weget
a24=0a= ±2b= 3
or1∴Equationsofstraightlinesare
x
2+y
3=1or x
2+y
1=1
LetthevertexCbe(h,k),thenthe
centroidof∆ABCis x1+x2+x3
3,y1+y2+y3
3
=22+h
3,3+1+k
3
=h
3,2+k
3⋅Itlieson2x +3y =1
2h
32+k=12h +3k =9
⇒LocusofCis2x +3y =9
( )
( )
( )
C.3
D.1
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question164
Ifthesumoftheslopesofthelinesgivenbyx22cxy 7y2=0isfour
timestheirproductchasthevalue
[2004]
Options:
A.-2
B.-1
C.2
D.1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question165
Iftheequationofthelocusofapointequidistantfromthepoint(a1,b1)
and(a2,b2)is(a1b2)x+ (a1b2)y+c=0,thenthevalueofcis
[2003]
Options:
3x +4y =0isoneofthelineofthepairequations.oflines
6x2xy +4cy2=0, Puty= 3
4x
weget,6x2+3
4x2+4c 3
4x2=0
6+3
4+9c
4=0c= 3
( )
Letthelinesbey=m1xandy=m2xthen
m1+m2= 2c
7andm1m2= 1
7
Giventhatm1+m2=4m1m2
2c
7= 4
7c=2
A. a1
2+b1
2a2
2b2
2
B. 1
2a2
2+b2
2a1
2b1
2
C.a1
2a2
2+b1
2b2
2
D. 1
2(a1
2+a2
2+b1
2+b2
2)
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question166
Locusofcentroidofthetrianglewhoseverticesare
(a cos t,a sin t), (b sin t, b cos t)and(1,0),wheretisaparameter,is
[2003]
Options:
A.(3x +1)2+ (3y)2=a2b2
B.(3x 1)2+ (3y)2=a2b2
C.(3x 1)2+ (3y)2=a2+b2
D.(3x +1)2+ (3y)2=a2+b2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
(xa1)2+ (yb1)2= (xa2)2+ (yb2)2
(a1a2)x+ (b1b2)y+1
2(a2
2+b2
2a1
2b1
2) = 0
Comparingwithgiveneqn.weget
c=1
2(a2
2+b2
2a1
2b1
2)
Weknowthatcentroid
(x,y) = x1+x2+x3
3,y1+y2+y3
3
x=a cos t +b sin t +1
3
a cos t +b sin t =3x 1
y=a sin t b cos t
3
a sin t b cos t =3y
Squaringandadding,
(3x 1)2+ (3y)2=a2+b2
( )
Question167
Ifx1,x2,x3andy1,y2,y3arebothinG.P.withthesamecommonratio,
thenthepoints(x1,y1), (x2,y2)and(x3,y3)
[2003]
Options:
A.areverticesofatriangle
B.lieonastraightline
C.lieonanellipse
D.lieonacircle.
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question168
Asquareofsidealiesabovethex-axisandhasonevertexattheorigin.
Thesidepassingthroughtheoriginmakesanangleα 0 <α<π
4with
thepositivedirectionofx-axis.Theequationofitsdiagonalnotpassing
throughtheoriginis
[2003]
Options:
A.y(cos α +sin α) + x(cos α sin α) = a
B.y(cos α sin α) x(sin α cos α) = a
C.y(cos α +sin α) + x(sin α cos α) = a
D.y(cos α +sin α) + x(sin α +cos α) = a
Answer:A
( )
Takingco-ordinatesas
Ax
r,y
r;B(x,y)andC(xr,yr)
Thenslopeoflinejoining
Ax
r,y
r,B(x,y) =
y 1 1
r
x 1 1
r
=y
x
andslopeoflinejoiningB(x,y)andC(xr,yr)
=y(r1)
x(r1)=y
x
m1=m2
∵SlopeofABandBCaresameandonepointBcommon.
⇒Pointslieonthestraightline.
( )
( ) ( )
( )
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question169
Ifthepairofstraightlinesx22pxy y2=0andx22qxy y2=0be
suchthateachpairbisectstheanglebetweentheotherpair,then
[2003]
Options:
A.pq = 1
B.p =q
C.p = q
D.pq =1.
Answer:A
Solution:
Solution:
Co-ordinatesofA= (a cos α,a sin α)EquationofOB,
y=tan π
4+α x
CArtoOB
∴SlopeofCA = cot π
4+α
EquationofCA
ya sin α = cot π
4+α(xa cos α)
(ya sin α)tan π
4+α= (a cos α x)
(ya sin α)
tan π
4+tan α
1tan π
4tan α
= (a cos α x)
(ya sin α)(1+tan α) = (a cos α x)(1tan α)
(ya sin α)(cos α +sin α)
= (a cos α x)(cos α sin α)
y(cos +sin α) a sin α cos α asin2α
=acos2αa cos α sin α x(cos α sin α)
y(cos α +sin α) + x(cos α sin α) = a
y(sin α +cos α) + x(cos α sin α) = a
( )
( )
( )
( ( ) )
( )
Equationofbisectorsofsecondpairofstraightlinesis,
qx2+2xy qy2=0...(i)
Itmustbeidenticaltothefirstpair....
x22pxy y2=0...(ii)
from(i)and(ii)
-------------------------------------------------------------------------------------------------
Question170
Atrianglewithvertices(4,0),(-1,-1),(3,5)is
[2002]
Options:
A.isoscelesandrightangled
B.isoscelesbutnotrightangled
C.rightangledbutnotisosceles
D.neitherrightanglednorisosceles
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question171
Locusofmidpointoftheportionbetweentheaxesofx cos α +y sin α =p
wherepisconstantis
[2002]
Options:
A.x2+y2=4
p2
B.x2+y2=4p2
C. 1
x2+1
y2=2
p2
D. 1
x2+1
y2=4
p2
Answer:D
Solution:
q
1=2
2p =q
1pq = 1
AB =(4+1)2+ (0+1)2= 26
BC =(3+1)2+ (5+1)2= 52
CA =(43)2+ (05)2= 26
AB =CA
∴Isoscelestriangle
(√26)2+ (√26)2=52
BC2=AB2+AC2
∴rightangledtriangle,
So,thegiventriangleisisoscelesrightangled.
Solution:
-------------------------------------------------------------------------------------------------
Question172
Thepairoflinesrepresentedby3ax2+5xy + (a22)y2=0are
perpendiculartoeachotherfor
[2002]
Options:
A.twovaluesofa
B.a
C.foronevalueofa
D.fornovaluesofa
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question173
EquationofABis
x cos α +y sin α =p;
x cos α
p+y sin α
p=1
x
pcos α +y
psin α =1
So,co-ordinatesofAandBare
p
cos α,0and 0,p
sin α
So,coordinatesofmidpointofABare
M(x1,y1) = p
2 cos α,p
2 sin α
x1=p
2 cos α&y1=p
2 sin α
cos α =p2x1andsin α =p2y1
cos2α+sin2α=1
Locusof(x1,y1)is 1
x2+1
y2=4
p2.
( ) ( )
( )
Weknowthatpairofstraightylines
ax2+2hxy +by2=0areperpendicularwhena+b=0
3a +a22=0a2+3a 2=0
a=3± 9+8
2=3± 17
2
Ifthepairoflinesax2+2hxy +by2+2gx +2f y +c=0intersectonthey
-axisthen
[2002]
Options:
A.2f gh =bg2+ch2
B.bg2ch2
C.abc =2f gh
D.noneofthese
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Putx=0inthegivenequation
by2+2f y +c=0
Foruniquepointofintersection,f2bc =0
af 2abc =0
Weknowthatforpairofstraightline
abc +2f gh af 2bg2ch2=0
2f gh bg2ch2=0