Statistics
Question1
Leta1,a2,....a10be10observationssuchthat Then
thestandarddeviationofa1,a2,..,a10isequalto:
[27-Jan-2024Shift1]
Options:
A.
5
B.
√5
C.
10
D.
√115
Answer:B
Solution:
Question2
Themeanandstandarddeviationof15observationswerefoundtobe
12and3respectively.Onrecheckingitwasfoundthatanobservation
wasreadas10inplaceof12.Ifµandσ2denotethemeanandvariance
ofthecorrectobservationsrespectively,then15(µ+µ2+σ2)isequal
to___
[27-Jan-2024Shift2]
Answer:2521
Solution:
-------------------------------------------------------------------------------------------------
Question3
Ifthemeanandvarianceofthedata65,68,58,44,48,45,60,α,β,
60whereα>βare56and66.2respectively,thenα2+β2isequalto
[29-Jan-2024Shift1]
Answer:6344
Solution:
-------------------------------------------------------------------------------------------------
Question4
Ifthemeanandvarianceoffiveobservationsare24/5and
194/25respectivelyandthemeanoffirstfourobservationsis7/2,then
thevarianceofthefirstfourobservationsinequalto
[29-Jan-2024Shift2]
Options:
A.
4/5
B.
77/12
C.
5/4
D.
105/4
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question5
LetMdenotethemedianofthefollowingfrequencydistribution.
Class 0−4 4−8 8−12 12−16 16−20
Frequency 3 9 10 8 6
Then20Misequalto:
[30-Jan-2024Shift1]
Options:
A.
416
B.
104
C.
52
D.
208
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question6
Thevarianceσ2ofthedata
xi 0 1 5 6 10 12 17
fi 3 2 3 2 6 3 3
Is
[30-Jan-2024Shift2]
Answer:29
Solution:
-------------------------------------------------------------------------------------------------
Question7
Letthemeanandthevarianceof6observationa,b,68,44,48,60be55
and194,respectivelyifa>b,thena+3bis
[31-Jan-2024Shift2]
Options:
A.
200
B.
190
C.
180
D.
210
Answer:C
Solution:
-------------------------------------------------------------------------------------------------
Question8
Letthemedianandthemeandeviationaboutthemedianof7
observation170,125,230,190,210,a,bbe170and205/7respectively.
Thenthemeandeviationaboutthemeanofthese7observationsis:
[1-Feb-2024Shift1]
Options:
A.
31
B.
28
C.
30
D.
32
Answer:D
Solution:
-------------------------------------------------------------------------------------------------
Question9
Options:
A.
2
B.
3/2
C.
5/2
D.
1
Answer:A
Solution:
Question10
Letthesixnumbersa1,a2,a3,a4,a5,a6beinA.P.anda1+a3=10.Ifthe
meanofthesesixnumbers 19
2andtheirvarianceisσ2,then8σ2isequal
to
[24-Jan-2023Shift2]
Options:
A.220
B.210
C.200
D.105
Answer:B
Solution:
Solution:
a1+a3=10 =a1+d5
a1+a2+a3+a4+a5+a6=57
6
2[a1+a6] = 57
-------------------------------------------------------------------------------------------------
Question11
Themeanandvarianceofthemarksobtainedbythestudentsinatest
are10and4respectively.Later,themarksofoneofthestudentsis
increasedfrom8to12.Ifthenewmeanofthemarksis10.2.thentheir
newvarianceisequalto:
[25-Jan-2023Shift1]
Options:
A.4.04
B.4.08
C.3.96
D.3.92
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question12
Thererottenapplesaremixedaccidentlywithsevengoodapplesand
fourapplesaredrawnonebyonewithoutreplacement.Lettherandom
variableXdenotethenumberofrottenapples.Ifµandσ2represent
meanandvarianceofX ,respectively,then10(µ2+σ2)isequalto
[29-Jan-2023Shift1]
a1+a6=19
2a1+5d =19 and a1+d=5
a1=2,d=3
Numbers: 2,5,8,11,14,17
Variance =σ2=meanofsquares-squareofmean
=22+52+82+ (11)2+ (14)2+ (17)2
619
2
2
=699
6361
4=105
4
2=210
( )
n
i=1
xi=10n
n
i=1
xi8+12 = (10.2)nn=20
Now
20
i=1
xi
2
20 (10)2=4
20
i=1
xi
2=2080
20
i=1
xi
282+122
20 (10.2)2
=108 104.04 =3.96
Options:
A.20
B.250
C.25
D.30
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question13
LetX = {11,12,13, ...., 40,41}andY = { 61,62,63, ...., 90,91 }be
thetwosetsofobservations.Ifxandyaretheirrespectivemeansandσ2
isthevarianceofalltheobservationsinX Y,then|x+yσ2|isequal
to_______.
[29-Jan-2023Shift2]
Answer:603
Solution:
xP(x) = 6
2=µ
σ2= x2P(x) µ2
σ2+µ2=0+1
2+12
10 +9
30 =2
10(σ2+µ2) = 20 Ans.
x=
41
i=11
i
31 =11 +41
2=26(31elements)
x=
91
j=61
i
31 =61 +91
2=76(31elements)
Combinedmean,µ=31 ×26 +31 ×76
31 +31
=26 +76
2=51
σ2=1
62 ×
31
i=1
(xiµ)2+
31
i=1
(yiµ)2=705
Since,xiXareinA.P.with31elements&commondifference1,sameisyiy,whenwritteninincreasingorder.
31
i=1
(xiµ)2=
31
i=1
(yiµ)2
=102+112+ .... + 402
( )
-------------------------------------------------------------------------------------------------
Question14
Themeanandvarianceof7observationsare8and16respectively.If
oneobservation14isomittedaandbarerespectivelymeanand
varianceofremaining6observation,thena +3b 5isequalto_______.
[30-Jan-2023Shift1]
Answer:37
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question15
LetSbethesetofallvaluesofa1forwhichthemeandeviationabout
themeanof100consecutivepositiveintegersa1,a2,a3, ...., a100is25.
ThenSis
[30-Jan-2023Shift2]
Options:
A.φ
B.{99}
=40 ×41 ×81
69×10 ×19
6=21855
| x+yσ2|=|26 +76 705 | = 603
x1+x2+ ..... + x7
7=8
x1+x2+x3... + x6+14
7=8
x1+x2+ .... + x6=42
x1+x2.... + x6
6=42
6=7=a
xi
2
782=16
Σxi2=560
x1
2+x2
2+ ... + x6
2=364
b=x1
2+x2
2+ ... + x6
2
672
=364
649
b=70
6
a+3b 5=7+3×70
65
=37
C.ℕ
D.{9}
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question16
Ifthevarianceofthefrequencydistribution
[31-Jan-2023Shift1]
Answer:5
Solution:
Solution:
-------------------------------------------------------------------------------------------------
leta1beanynaturalnumber
a1,a1+1,a1+2, ...., a1+99 arevaluesof ai
S
x=a1+ (a1+1) + (a1+2) + .... + a1+99
100
=100a1+ (1+2+ .... + 99)
100 =a1+99 ×100
2×100
=a1+99
2
Meandeviationaboutmean =
100
1=1
xix
100
=
299
2+97
2+95
2+ .... + 1
2
100
=1+3+ .... + 99
100
=
50
2[1+99]
100
=25
So,itistrueforeverynaturalno.'a1
| |
( )
σx
2=σd
2=fidi
2
fi
fidi
fi
2
=150
45 +α0=3
150 =135 +
=15 α=5
( )
Question17
LetthemeanandstandarddeviationofmarksofclassAof100students
berespectively40andα(>0),andthemeanandstandarddeviationof
marksofclassBofnstudentsberespectively55and30 α.Ifthemean
andvarianceofthemarksofthecombinedclassof100 +nstudentsare
respectively50and350,thenthesumofvariancesofclassesAandB
is:
[31-Jan-2023Shift2]
Options:
A.500
B.650
C.450
D.900
Answer:0
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question18
Themeanandvarianceof5observationsare5and8respectively.If3
observationsare1,3,5,thenthesumofcubesoftheremainingtwo
observationsis
[1-Feb-2023Shift1]
Options:
A.1072
B.1792
x=100 ×40 +55n
100 +n
5000 +50n =4000 +55n
1000 =5n
n=200
σ1
2=xi
2
100 402
σ2
2=xj
2
100 552
350 =σ2=xi
2+ xj
2
300 (x)2
2850 =(1600 +α2) × 100 + [(30 α)2+3025] × 200
300 (50)2
8550 =α2+2(30 α)2+7650
α2+2(30 α)2=900
α240α +300 =0
α=10,30
σ1
2+σ2
2=102+202=500
C.1216
D.1456
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question19
Let9 =x1<x2< ... < x7beinanA.P.withcommondifferenced.Ifthe
standarddeviationofx1,x2..., x7is4andthemeanisx,thenx +x6is
equalto:
[1-Feb-2023Shift2]
Options:
A.18 1 +1
3
B.34
C.2 9 +8
7
D.25
Answer:B
Solution:
Solution:
( )
( )
1+3+5+a+b
5=5
a+b=16..... . (1)
σ2=x1
2
5x
5
2
8=12+32+52+a2+b2
525
a2+b2=130...(2)
by (1), (2)
a=7,b=9
or a =9,b=7
( )
9=x1<x2< ...... < x7
9,9+d,9+2d , ..... . .9 +6d
0,d,2d , ..... . .6d
xnew =21d
7=3d
16 =1
7(02+12+ ...... + 62)d29d 2
=1
not
not 6 ×not t ×13
not 6 d29d 2
16 =4d 2
d2=4
d=2
( )
-------------------------------------------------------------------------------------------------
Question20
Themeanandvarianceofasetof15numbersare12and14
respectively.Themeanandvarianceofanothersetof15numbersare
14andσ2respectively.Ifthevarianceofallthe30numbersinthetwo
setsis13,thenσ2isequalto:
[6-Apr-2023shift1]
Options:
A.12
B.10
C.11
D.9
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question21
Ifthemeanandvarianceofthefrequencydistribution.
are9and15.08respectively,thenthevalueofα2+β2αβis________:
[6-Apr-2023shift2]
Answer:25
Solution:
x+x6=6+9+10 +9
Combinevar. =n1σ2+n2σ2
n1+n2
+n1n2(m1m2)2
(n1+n2)
13 =15 14 +15 σ2
30 +15 15(12 14)2
30 ×30
13 =14 +σ2
2+4
4
σ2=10
-------------------------------------------------------------------------------------------------
Question22
Letthemeanandvarianceof8numbersx,y,10,12,6,12,4,8be9and
9.25respectively.Ifx >y,then3x 2yisequalto________.
[8-Apr-2023shift1]
Answer:25
Solution:
Solution:
N= fi=40 +α+β
fixi=360 + +12β
fixi
2=3904 +36α +144β
Mean (x) = Σfixi
Σfi
=9
360 + +12β =9(40 +α+β)
= α=β
σ2=Σfix1
2
Σfi
Σfixi
Σfi
2
3904 +36α +144β
40 +α+β (x)2=15.08
3904 +180α
40 + (9)2=15.08
α=5
Now, α2+β2αβ =α2=25
( )
x+y+52
8=9x+y=20
Forvariance
x9,y9,3,3,1, 5, 1, 3
x=0
(x9)2+ (y9)2+54
802=9.25
(x9)2+ (11 x)2=20
x=7 or 13 y=13,7
-------------------------------------------------------------------------------------------------
Question23
Letthemeanandvarianceof12observationsbe 9
2and4respectively.
Lateron,itwasobservedthattwoobservationswereconsideredas9
and10insteadof7and14respectively.Ifthecorrectvarianceis m
n,
wheremandnarecoprime,thenm +nisequalto
[8-Apr-2023shift2]
Options:
A.316
B.317
C.315
D.314
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question24
Ifthemeanofthefrequencydistribution
is28,thenitsvarianceis_______.
[10-Apr-2023shift1]
Answer:151
3x 2y =3×13 2×7=25
Σx
12 =9
2
x=54
Σx2
12 9
2
2=4
x2=291
xnew =54 (9+10) + 7+14 =56
xnew
2=291 (81 +100) + 49 +196 =355
σnew
2=355
12 56
12
2
σnew
2=281
36 =m
n
m+n=317 Option(2)
( )
( )
Solution:
-------------------------------------------------------------------------------------------------
Question25
Letmbethemeanandsigmabethestandarddeviationofthe
distribution
wherefi=62.If[x]denotesthegreatestintegerx,then[µ2 +σ2]is
equalto
[10-Apr-2023shift2]
Options:
A.8
B.7
C.6
D.9
Answer:A
Solution:
x=Σfixi
N
28 =10 +45 +25x +175 +130
14 +x
28 ×14 +28x =410 +25x
3x =410 392
x=18
3=6
Variance =1
Nfixi
2 (x)2
=1
2018700 (28)2
=935 784 =151
-------------------------------------------------------------------------------------------------
Question26
LetsetsAandBhave5elementseach.Letmeanoftheelementsinsets
AandBbe5and8respectivelyandthevarianceoftheelementsinsets
AandBbe12and20respectively.AnewsetCof10elementsisformed
bysubtracting3fromeachelementofAandadding2toeachelement
ofB.ThenthesumofthemeanandvarianceoftheelementsofCis
_______.
[11-Apr-2023shift1]
Options:
A.36
B.40
C.32
D.38
Answer:D
Solution:
Solution:
fi=62
3k2+16k 12k 64 =0
k=4 or 16
3(rejected )
µ=Σf ixi
Σf i
µ=8+2(15) + 3(15) + 4(17) + 5
62 =156
62
σ2= fixi
2 (∑ fixi)2
=8×12+15 ×13 +17 ×16 +25
62 156
62
2
σ2=500
62 156
62
2
σ2+µ2=500
62
[σ2+µ2] = 8
( )
( )
ωA = {a1,a2,a3,a4,a5}
B= {b1,b2,b3,b4,b5}
5
Σ
i=1
ai
2
5
5
Σ
i=1
ai
5
2
=12,
5
Σ
i=1
bi
2
5
5
Σ
i=1
bi
5
2
=20
5
i=1
ai
2=185,
5
i=1
bi
2=420
Now,C= {C1,C2, .. . C10}
Meanof C,C=(Σai15) + (Σbi10)
10
C=10 +50
10 =6
σ2=
10
Σ
i=1
Ci
2
10 = (C)2
( ) ( )
-------------------------------------------------------------------------------------------------
Question27
Letthemeanof6observations1,2,4,5,xandy be 5andtheirvariance
be10.Thentheirmeandeviationaboutthemeanisequalto
[11-Apr-2023shift2]
Options:
A. 7
3
B. 10
3
C. 8
3
D.3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question28
Letthepositivenumbersa1,a2,a3,a4anda5beinaG.P.Lettheirmean
andvariancebe 31
10and m
nrespectively,wheremandnareco-prime.If
themeanoftheirreciprocalis 31
40anda3+a4+a5=14,thenm +nis
equalto______.
[12-Apr-2023shift1]
=Σ(ai3)2+Σ(bi2)2+
10 (6)2
=Σai
2+Σbi
26Σai+4Σbi+65
10 36
=185 +420 150 +160 +65
10 36
=32
Mean +Variance =C+σ2=6+32 =38
Meanof1,2,4,5,x,yis5
andvarianceis10
mean 12 +x+y
6=5
12 +x+y=30
x+y=18
andbyvariance x2+y2+46
652=10
x2+y2=164
x=8 y =10
meandaviation =|xx|
6
4+3+1+0+3+5
6=16
6=8
3
Answer:211
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question29
Letthemeanofthedata
be5.Ifmandσ2arerespectivelythemeandeviationaboutthemean
andthevarianceofthedata,then
m+σ2isequalto_____.
[13-Apr-2023shift1]
Answer:8
Solution:
Let a
r2,a
r,a,ar,ar2
Given a
r2+a
r+a+ar +ar2=5×31
10.. . (1)
And r2
a+r
a+1
a+1
ar +1
ar2=5×31
40.. . (2)
(1)÷(2)a2=4a=2
r+1
r=52(a 2)
r=2
Now 1
2,1,2.4,8
∴Now 1
2,1,2.4,8
σ2=Σx2
NΣx
N
2
=186
25 =M
N211 =m+n
( )
5=x=Σxifi
Σf i
=4+72 +140 + +72
64 +α
320 + =288 + =32 α=16
M.D. (x) = Σfi
|xix|fiwhere fi=64 +16 =80
M.D. (x) = 4×4+24 ×2+28 ×0+16 ×2+8×4
80 =8
5
Variance =Σfi(xix)2
Σfi
-------------------------------------------------------------------------------------------------
Question30
Themeanandstandarddeviationofthemarksof10studentswere
foundtobe50and12respectively,Later,itwasobservedthattwo
marks20and25werewronglyreadas45and50respectively.Thenthe
correctvarianceis_______.
[13-Apr-2023shift2]
Answer:269
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question31
Themeanandstandarddeviationof10observationsare20and8
respectively.Lateron,itwasobservedthatoneobservationwas
recordedas50insteadof40.Thenthecorrectvarianceis
[15-Apr-2023shift1]
Options:
A.14
=4×16 +24 ×4+0+16 ×4+8×16
80 =352
80
m+σ2=3×16
128
80 +352
80
=8
Mean =Σxi
10
50 =Σxi
10
Σxi=500
correct xi=500 45 50 +20 +25 =450
σ2=Σxi
2
10 = (x)2
144 =Σxi
2
10 2500
Σxi
2=26440
correct xi
2=26440 (45)2 (50)2+ (20)2+ (25)2
=26440 2025 2500 +400 +625
=22940
σ2=correct Σxi
2
10 correct Σxi
10
2
=22940
10 450
10
2=2294 2025
=269
( )
( )
B.11
C.12
D.13
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question32
Letabiasedcoinbetossed5times.Iftheprobabilityofgetting4heads
isequaltotheprobabilityofgetting5heads,thentheprobabilityof
gettingatmosttwoheadsis:
[26-Jun-2022-Shift-1]
Options:
A. 275
65
B. 36
54
C. 181
55
D. 46
64
Answer:D
Solution:
µ=20,σ=8
µCorrected =200 50 +40
10 =19
σ2=1
10 xi
2202
(64 +400)10 = xi
2
σCorrected
2=1
10[(64 +400)10 2500 +1600] 192
=374 361 =13
Iftheprobabilitythatarandomlychosen6-digitnumberformedby
usingdigits1and8onlyisamultipleof21isp,then96pisequalto___
[26-Jun-2022-Shift-2]
Answer:33
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question34
Themeanofthenumbersa,b,8,5,10is6andtheirvarianceis6.8.If
Misthemeandeviationofthenumbersaboutthemean,then25Mis
equalto:
[26-Jun-2022-Shift-1]
Options:
A.60
B.55
C.50
D.45
Answer:A
Solution:
Question33
Question35
Themeanandstandarddeviationof50observationsare15and2
respectively.Itwasfoundthatoneincorrectobservationwastakensuch
thatthesumofcorrectandincorrectobservationsis70.Ifthecorrect
meanis16,thenthecorrectvarianceisequalto:
[26-Jun-2022-Shift-2]
Options:
A.10
B.36
C.43
D.60
Answer:C
Solution:
Solution:
Question36
Themeanandvarianceofthedata4,5,6,6,7,8,x,y,wherex <y,are6
and 9
4respectively.Thenx4+y2isequalto
[27-Jun-2022-Shift-2]
Options:
A.162
B.320
C.674
D.420
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question37
Themeanandstandarddeviationof15observationsarefoundtobe8
and3respectively.Onrecheckingitwasfoundthat,intheobservations,
20wasmisreadas5.Then,thecorrectvarianceisequalto____
[28-Jun-2022-Shift-1]
Answer:17
Solution:
Mean =4+5+6+6+7+8+x+y
8=6
x+y=12.... (i)
Andvariance
=22+12+02+02+12+22+ (x6)2+ (y6)2
8
=9
4
(x6)2+ (y6)2=8.... (ii)
From(i)and(ii)
x=4andy=8
x4+y2=320
xi
2
15 82=9 xi
2=15 ×73 =1095
Letxcbecorrectedmeanxc=9
xc
2=1095 25 +400 =1470
Correctvariance = 1470
15 (9)2=98 81 =17
Question38
Letthemeanandthevarianceof5observationsx1,x2,x3,x4,x5be 24
5
and 194
25 respectively.Ifthemeanandvarianceofthefirst4observation
are 7
2andarespectively,then(4a +x5)isequalto:
[29-Jun-2022-Shift-1]
Options:
A.13
B.15
C.17
D.18
Answer:B
Solution:
Solution:
Mean(x) = x1+x2+x3+x4+x5
5
Given, x1+x2+x3+x4+x5
5=24
5
x1+x2+x3+x4+x5=24
Now,Meanoffirst4observation
=x1+x2+x3+x4
4
Given, = x1+x2+x3+x4
4=7
2
x1+x2+x3+x4=14
Fromequation(1)and(2),weget
14 +x5=24
x5=10
Now,varianceoffirst5observation
=xi
2
n (x)2
=x1
2+x2
2+x3
2+x4
2+x5
2
524
5
2
Given,
x1
2+x2
2+x3
2+x4
2+x5
2
524
5
2=194
24
x1
2+x2
2+x3
2+x4
2+x5
2=5194
25 +576
25
x1
2+x2
2+x3
2+x4
2+x5
2=154
x1
2+x2
2+x3
2+x4
2+ (10)2=154
x1
2+x2
2+x3
2+x4
2=54
Now,varianceoffirst4observation
=x1
2+x2
2+x3
2+x4
2
47
2
2
Given,
( )
( )
( )
( )
-------------------------------------------------------------------------------------------------
Question39
Thenumberofvaluesofa N suchthatthevarianceof
3,7,12,a,43 aisanaturalnumberis:
[29-Jun-2022-Shift-2]
Options:
A.0
B.2
C.5
D.infinite
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question40
Ifthemeandeviationaboutthemeanofthenumbers1,2,3,n,wheren
isodd,is 5(n+1)
n,thennisequalto___
[25-Jun-2022-Shift-2]
Answer:21
x1
2+x2
2+x3
2+x4
2
47
2
2=a
Given,
x1
2+x2
2+x3
2+x4
2
47
2
2=a
54
449
4=a
a=5
4
4a +x5
=4×5
4+10 =15
( )
( )
Mean = 13
Variance = 9+49 +144 +a2+ (43 a)2
5132N
2a2a+1
5N
2a2a+15n =0musthavesolutionas
naturalnumbers
itsD=40n 7alwayshas3atunitplace
Dcan'tbeperfectsquare
So,acan'tbeinteger.
Solution:
-------------------------------------------------------------------------------------------------
Question41
Ifthemeandeviationaboutmedianforthenumbers
3,5,7,2k,12,16,21,24,arrangedintheascendingorder,is6thenthe
medianis
[25-Jul-2022-Shift-2]
Options:
A.11.5
B.10.5
C.12
D.11
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question42
Themeanandstandarddeviationof40observationsare30and5
respectively.Itwasnoticedthattwooftheseobservations12and10
werewronglyrecorded.Ifσisthestandarddeviationofthedataafter
omittingthetwowrongobservationsfromthedata,then38σ2isequal
Mean =
n(n+1)
2
n=n+1
2
M.D. =
2n1
2+n3
2+n5
2+ .. . 0
n=5(n+1)
n
((n1) + (n3) + (n5) + .. . 0) = 5(n+1)
n+1
4 (n1) = 5(n+1)
So,n=21
( )
( )
Median = 2k +12
2=k+6
Meandeviation = |xiM|
n=6
(k+3) + (k+1) + (k1) + (6k) + (6k) + (10 k) + (15 k) + (18 k)
8
58 2k
8=6
k=5
Median = 2×5+12
2=11
to_________.
[26-Jul-2022-Shift-2]
Answer:238
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question43
Themeanandvarianceof10observationswerecalculatedas15and15
respectivelybyastudentwhotookbymistake25insteadof15forone
observation.Then,thecorrectstandarddeviationis________.
[27-Jul-2022-Shift-1]
Answer:2
Solution:
Solution:
µ=xi
40 =30 xi=1200
σ2=xi
2
40 (30)2=25 xi
2=37000
Afteromittingtwowrongobservations
yi=1200 12 10 =1178
yi
2=37000 144 100 =36756
Nowσ2=yi
2
38 yi
38
2
=36756
38 1178
38
2= 312
=38σ2=36756 36518 =238
( )
( )
Given
10
i=1
xi
10 =15.....
10
i=1
xi=150
and
10
i=1
xi
2
10 152=15
10
i=1
xi
2=2400
Replacing25by15weget
i=1
9xi+25 =150
i=1
9xi=125
-------------------------------------------------------------------------------------------------
Question44
Letthemeanandthevarianceof20observationsx1,x2, ..., x20be15
and9,respectively.Forα R,ifthemeanof
(x1+α)2, (x2+α)2, ..., (x20 +α)2is178,thenthesquareofthemaximum
valueofαisequalto______.
[29-Jul-2022-Shift-1]
Answer:4
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question45
Ifthevarianceof10naturalnumbers1,1,1, ..., 1,kislessthan10,
thenthemaximumpossiblevalueofkis..........
[2021,24Feb.Shift-11]
∴Correctmean =
9
i=1
xi+15
10 =125 +15
10 =14
Similarly,
2
i=1
xi
2=2400 252=1775
∴Correctvariance =
9
i=1
xi
2+152
10 142 = 1775 +225
10 142=4
∴CorrectS.D= 4=2.
Given
20
i=1
20
xi=15
20
i=1
xi=300
and
20
i=1
20
xi
2 (x)2=9
20
i=1
xi
2=4680
Mean = (xi+α)2+ (x2+α)2+ ...... + (x20 +α)2
20 =178
20
i=1
xi
2+
20
i=1
xi+20α2
20 =178
4680 +600α +20α2=3560
α2+30α +56 =0
α2+28α + +56 =0
(α+28)(α+2) = 0
αmax = 2α2
max =4
Answer:11
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question46
LetX 1,X2, ..., X18beeighteenobservations,suchthat 18
i=1(Xiα) = 36
and 18
i=1(Xiβ)2=90,
whereαandβaredistinctrealnumbers.Ifthestandarddeviationof
theseobservationsis1,thenthevalueof|αβ|is
[2021,26Feb.Shift-II]
Answer:4
Solution:
Given,10naturalnumbers = 1,1,1, .. . 1,k
Accordingtothequestion,variance
(σ2) < 10
σ2=x2
nx
n
2
σ2=(9+k2)
10 9+k
10
2<10
10(9+k2) (81 +k2+18k) < 1000
90 +10k281 k218k <1000
9k218k +9<1000
(k1)2<1000
9
k1<1010
3
and k 1<1010
3
k<1010
3+1
ItisnotpossiblebecausekN.
∴Maximumpossibleintegralvalueofkis11.
( )
( )
Given,
18
i=1
[xiα] = 36
and
18
i=1
xiβ|2=90
Now,
18
i=1
(xiα) = 36
18
i=1
xi18α =36
18
i=1
xi=36 +18α...(i)
Again,
18
i=1
xi
2+18β2
18
i=1
xi=90
-------------------------------------------------------------------------------------------------
Question47
Themeanageof25teachersinaschoolis40yr.Ateacherretiresatthe
ageof60yrandanewteacherisappointedinhisplace.Ifthemeanage
oftheteachersinthisschoolnowis39yr,thentheage(inyears)ofthe
newlyappointedteacheris.........
[2021,18MarchShift-I]
Answer:35
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question48
Letinaseriesof2nobservations,halfofthemareequaltoaand
remaininghalfareequaltoa.Also,byaddingaconstantbineachof
theseobservations,themeanandstandarddeviationofnewsetbecome
18
i=1
xi
2+18β2(36 +18α) = 90
[UsingEq.(i)]
18
i=1
xi
2=90 18β2+(36 +18α)
Given,standarddeviation = 1
i.eσ2=1
18
i=1
xi
2
18
18
i
xi
18
2
=1
1
18(90 18β2+36αβ +72β)
36 +18α
18
2=1
5β2+2αβ + (2+α)2=1
5β2+2αβ + 4α2+ (−) = 1
β2+2αβ + α2 =0
α2+β2+ (−2αβ) + =0
(αβ)2+4(αβ) = 0
(αβ)(αβ+4) = 0
αβ= 4(∵αβ)
|αβ| = | 4| = 4
( )
( )
Given,n=25,x=40
x=x
n
x=25 ×40 =1000
Newsum = 1000 60 +x
=940 +x
Newaverage = 39
39 =940 +x
25
975 =940 +x
x=35
5and20,respectively.Then,thevalueofa2+b2isequalto
[2021,18MarchShift-11]
Options:
A.425
B.650
C.250
D.925
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question49
Considerasetof3nnumbershavingvariance4.Inthisset,themeanof
first2nnumbersis6andthemeanoftheremainingnnumbersis3.A
newsetisconstructedbyadding1intoeachoffirst2nnumbersand
subtracting1fromeachoftheremainingnnumbers.Ifthevarianceof
thenewsetisk,then9kisequalto
[2021,17MarchShift-II]
Answer:68
Solution:
Solution:
Letobservationsaredenotedbyxifor1i<2n.
M ean(x) = xi
2n
=(a+a+a+ ... + a) (a+a+a+ ... + a)
2n
x=0
and σx
2=x1
2
2n (x)2
=a2+a2+a2+ .... + a22n times
2n 0=a2
σx
2=a2σx=a
Accordingtothequestion,addingaconstantb,thennewmean(y) = x+b=5
0+b=5
b=5
andnewSD (σy) = σx
σy=σx=20
a=20
a2+b2=400 +25 =425
x:x1,x2,x3...xn+1
-------------------------------------------------------------------------------------------------
Question50
Considerthreeobservationsa,bandc,suchthatb =a+c.Ifthe
standarddeviationofa +2,b+2,c+2isd ,thenwhichofthefollowing
istrue?
[2021,16MarchShift-1]
Options:
A.b2=3(a2+c2) + 9d 2
B.b2=a2+c2+3d 2
C.b2=3(a2+c2+d2)
D.b2=3(a2+c2) 9d 2
Answer:D
Solution:
Solution:
xn+2, x2nx2n +1x3n
1
3n
3n
i=1
xi
2 (x)2=4
[where,x=n1x1+n2x2
n1+n2
=2n(6) + n(3)
3n =5
1
3n
3n
i=1
xi
2=25 +4=29
3n
i=1
=87n
x:x1+1,x2+1, ..., x2n +1,x(2n +1)1...,
x3n 1
x=2n(6+1) + n(31)
3n =16
3
k=1
3n
3n
i=1
xi
2256
9
=1
3n
3n
i=1
xi
2+2
2n
i=1
xi
2
3n
i=2n +1
xi
+3n
256
9
=1
3n[87n +2(12n) 23n +3n] 256
9
k=36 256
9
9k =324 256 =68
]
[ ]
Given,threeobservations = a,b,c
b=a+c
Standarddeviation = σ
σ= (xiµ)2
N
When x1=a+2,x2=b+2,x3=c+2
µ=a+2+b+2+c+2
3=2b
3+2
x1µ= (a+2) (2b 3+2) = a2b 3
x2µ= (b+2) (2b 3+2) = b2b 3
x3µ= (c+2) (2b 3+2) = c2b 3
-------------------------------------------------------------------------------------------------
Question51
ConsiderthestatisticsoftwosetsofobservationsasfollowsSizeMean
Variance
Ifthevarianceofthecombinedsetofthesetwoobservationsis17then
thevalueofnisequalto 17
9,thenthevalueofnisequalto
[2021,16MarchShift-1]
Answer:5
Solution:
Solution:
d=(a2b 3)2+ (b2b 3)2+ (c2b 3)2
3
3d 2=a2+b2+c2+12b2
9
4
3(ab +b2+bc)
3d 2=a2+b2+c2+4
3b24
3
[b(a+c) + b2]
3d 2=a2+b2+c2+4
3
b24
3[bb+b2]
3d 2=a2+b2+c2+4
3b24
32b2
3d 2=a2+c2b2
3
b2=3a2+3c29d 2
Varianceofcombinedsetis17 9.LettheobservationsforgroupIbesetA: {x1,x2,x3, ..., x10}
xi
10 =2
xi
=20
andΣxi
2
10 xi
10
2
=2
xi
2
10 400
100 =2
( ) ( )
-------------------------------------------------------------------------------------------------
Question52
Ifthemeanandvarianceofthefollowingdata:
6,10,7,13,a,12,b,12are9and 37
4respectively,then(ab)2isequal
to
[2021,27JulyShift-1]
Options:
A.24
B.12
C.32
D.16
Answer:D
Solution:
Solution:
xi
2
10 =6
xi
2=60
LettheobservationforgroupIIbesetB: {y1,y2,y3, ..., y10}
yi
n=3
yi
=3n
and yi
2
nyi
n
2
=1
yi
2
n9=1 yi
2=10n
Combinedvariance = 17 9
σ2
= (xi
2+yi
2)
n+10 xi+yi
n+10
2
17
9=60 +10n
n+10 20 +3n
n+10
2
17
9=(10n +60)(n+10) (3n +20)2
(n+10)2
17
9=n2+40n +200
n2+20n +100
n2+340n +1700 =9n2+360n +1800
8n220n 100 =0
2n25n 25 =0
2n210n +5n 25 =0
2n(n5) + 5(n5) = 0
(2n +5)(n5) = 0
n=5
( )
[ ( ) ]
[ ]
Given,data = {6,10,7,13,a,12,b,12}
Mean = 9,Variance = 37
4
Now,mean
=
xi
n=6+10 +7+13 +a+12 +b+12
8
or 9 =60 +a+b
8
72 =60 +a+b
-------------------------------------------------------------------------------------------------
Question53
Letthemeanandvarianceofthefrequencydistribution
be6and6.8,respectively.Ifx3ischangedfrom8to7,thenthemean
forthenewdatawillbe
[2021,27JulyShift-II]
Options:
A.4
B.5
C. 17
3
D. 16
3
Answer:C
Solution:
Solution:
a+b=12...(i)
Variance =xi
2
nΣxi
n
2
37
4=62+102+72+132+a2+122+b2+122
8
37
4=642 +a2+b2
881
37
4=642 +a2+b2648
8
74 =a2+b26
a2+b2=80...(ii)
(a+b)2=a2+b2+2ab
PuttingthevaluesfromEqs.(i)and(ii),weget
2ab = (a+b)2 (a2+b2)
2ab =12280 =64
Now,(ab)2=a2+b22ab
=80 64 =16
( )
Given,
Mean =6
8+24 + +
8+α+β=6
Mean =fixi
fi
+ =16...(i)
Also,variance =6.8
( )
-------------------------------------------------------------------------------------------------
Question54
10Considerthefollowingfrequencydistribution
Ifthesumofallfrequenciesis584andmedianis45,then|αβ|is
equalto........
[2021,25JulyShift-1]
Answer:164
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question55
Thefirstofthetwosamplesinagrouphas100itemswithmean15and
standarddeviation3.Ifthewholegrouphas250itemswithmean15.6
4×16 +4×α+9×β
8+α+β=6.8
Variance =fi(xix)2
fi
64 + + = (8+α+β)6.8
Multiplybothsidesby 10,
640 +40α +90β =544 +68α +68β)
28α 22β =96
14α 11β =48...(ii)
FromEqs.(i)and(ii),
α=5 and β =2
Ifx3ischangedfrom8to7then,
Newmean = 8+24 +35 +18
15 =85
15 =17
3
( )
Sumoffrequencies = 584
α+β+110 +54 +30 =584
α+β=390
Medianisat 584
2=292 th
∵Median = 45(liesinclass40 50 )
α+110 +54 +15 =292
α=113
β=390 113 =277
αβ=113 277 = 164
| αβ| = 164
andstandarddeviation13.44,thenthestandarddeviationofthe
secondsampleis
[2021,25JulyShift-II]
Options:
A.8
B.6
C.4
D.5
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question56
12Considerthefollowingfrequencydistribution
Ifmean =309
22 andmedian =14,thenthevalue(ab)2isequalto
...........
[2021,22JulyShift-II]
Combinedmean = 15.6
100 ×15 +150 ×xB
250 =15.6
1500 +150xB=3900
150xB=2400
xB=2400
150 =16
CombinedSD = 13.44
⇒Combinedvariance(σ2) = 13.44
σ2=xi
2
n (x)2
13.44 =xi
2
250 (15.6)2
xi
2=64200...(i)
ForsampleA1
(xi)A
2=23400
Now, (xi)B
2=64200 23400 =40800
SDofsample B = (xi)B
2
nB
(xB)2
=40800
150 256 =4
Answer:4
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question57
Themeanof6distinctobservationsis6.5andtheirvarianceis10.25.If
4outof6observationsare2,4,5and7,thentheremainingtwo
observationsare
[2021,20JulyShift-1]
Options:
A.10,11
B.3,18
C.8,13
D.1,20
Answer:A
Solution:
Solution:
Mean =
fixi
n
=3a +9b +504
a+b+26 =309
22
66a +198b +11088 =309a +309b +8034
243a +11bb =3054
81a +37b =1018
Median = 12 +
a+b+26
2 (a+b)
12 ×6=14
13
2a+b
4=2a+b
4=9
2
a+b=18
So,81a +37b =1018
a+b=18
a=8and b =10
(ab)2=4
( )
Mean = 6.5
Total =6×6.5 =39
Variance =xi
2
n xi
n
2
10.25 =xi
2
66.52
xi
2=6(10.25 +42.25) = 52.5 ×6
2+4+5+7+x1+x2=39
x1+x2=21
xi
2=52.5 ×6
4+16 +25 +49 +x1
2+x2
2=315
x1
2+x2
2=221
x1
2+ (21 x1)2=221
( )
-------------------------------------------------------------------------------------------------
Question58
Ifthemeanandvarianceofsixobservations7,10,11,15,a,bare10
and 20
3,respectively,thenthevalueof|ab|isequalto
[2021,20JulyShift-II]
Options:
A.9
B.11
C.7
D.1
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question59
Themeanof10numbers7 ×8,10 ×10,13 ×12,16 ×14, ....is
[2021,31Aug.Shift-1]
2x1
242x1+441 =221
x1
221x1+110 =0
(x111)(x110) = 0
x1=10or11
Given,Mean = 10
i.e. 7+10 +11 +15 +a+b
6=10
a+b=17...(i)
Also,variance = 20
3
i.e. (7)2+ (10)2+ (11)2+ (15)2+a2+b2
6
( Mean )2=20
3
495 +a2+b2
6100 =20
3
a2+b2=145...(ii)
UsingEqs.(i)and(ii),putb=17 a
a2+ (17 a)2=145
a2+289 +a234a =145
2a234a +144 =0
a217a +72 =0
(a9)(a8) = 0
a=9ora=8
Usingb=17 a
b=8orb=9
| ab| = 1
Answer:398
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question60
Themeanandvarianceof7observationsare8and16respectively.If
twoobservationsare6and8,thenthevarianceoftheremaining5
observationsis
[2021,31Aug.Shift-II]
Options:
A. 92
5
B. 134
5
C. 536
25
D. 112
5
Answer:C
Solution:
Solution:
(7×8), (10 ×10), (13 ×12), ......
7,10,13, ......
an=7+ (n1)3=3n +4
8,10,12, .......
bn=8+ (n1)2=2n +6
So, T n= (3n +4)(2n +6)
=6n2+26n +24
Sum Sn=ΣT n
=6n(n+1)(2n +1)
6+26 n(n+1)
2+24n
Mean = sum
10 =10 11 21
10 +13 10 11
10 +24 10
10
=398
[ ] [ ]
Leta,b,c,dandeare5remainingobservationsn=7,Mean = 8,Variance = 16
Sumofobservations = 7×8=56
Meanofremainingobservations
=56 86
5=42
5
andVariance = Σx2
n (x)2
16 =Σx2
764 Σx2=560
⇒a2+b2+c2+d2+e2=560 8262
=460
Varianceof5remainingobservations
-------------------------------------------------------------------------------------------------
Question61
Letnbeanoddnaturalnumbersuchthatthevarianceof1,2,3,4,..., n
is14.Thennisequalto
[2021,27Aug.Shift-1]
Answer:13
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question62
Anonlineexamisattemptedby50candidatesoutofwhich20areboys.
Theaveragemarksobtainedbyboysis12withavariance2.The
varianceofmarksobtainedby30girlsisalso2.Theaveragemarksof
all50candidatesis15.Ifµistheaveragemarksofgirlsandσ2isthe
varianceofmarksof50candidates,thenµ +σ2isequalto
[2021,27Aug.Shift-II]
Answer:25
Solution:
Solution:
=460
542
5
2=536
25
( )
Variance = Σx2
n (x)2[ x= means]
14 =12+22+33+ ... + n2
n
1+2+3+ ... + n
n
2
14 =n(n+1)(2n +1)
6n n(n+1)2
2n
14 =(n+1)(2n +1)
6(n+1)2
4
14 =n+1
12 [2(2n +1) 3(n+1)]
168 = (n+1)(n1)
n21=168
n2=169⇒ n=13
( )
( )
( )
Numberofboys = 20
-------------------------------------------------------------------------------------------------
Question63
Themeanandstandarddeviationof20observationswerecalculatedas
10and2.5respectively.Itwasfoundthatbymistakeonedatavaluewas
takenas25insteadof35.Ifαandβarethemeanandstandard
deviationrespectivelyforcorrectdata,then(α,β)is
[2021,26Aug.Shift-1]
Options:
A.(11,26)
B.(10.5,25)
C.(11,25)
D.(10.5,26)
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question64
Numberofgirls = 30
σB
2=2,XB=12,σG
2=2
XG=50 ×15 20 ×12
30
=510
30 =17 =µ
Varianceof50candidates
σ2=20σB
2+30σG
2
50 +20 30
(20 +30)2
(XBXG)2
=20 ×2+30 ×2
50 +600
2500 ×25 =8
µ+σ2=17 +8=25
x=xi
20 =10
xi=200
σ2=xi
2
20 100 =6.25
xi
2=20 ×106.25 =2125
Now,replacing 25 with 35 asonedata,
then
xi25 +35 =210
xi
2252+352=2725
Newmean =210
20 =10.5 = (α)
NewSD =2725
20 (10.5)2
SD = 136.25 110.25
= 26 = β
(α,β) = (10.5,26)
Letthemeanandvarianceoffournumbers3,7,xandy(x>y)be5and
10respectively.Then,themeanoffournumbers3 +2x17+2y1x+yand
xyis
[2021,26Aug.Shift-II]
Answer:12
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question65
LetX bearandomvariablewithdistribution.
IfthemeanofX is2.3andvarianceofX isσ2,then100σ2isequalto
[2021,01Sep.Shift-II]
Answer:781
Solution:
Solution:
Given,Meanof3,7xandyis5
So,3+7+x+y=20
x+y=10...(i)
andVarianceof3,7,xandyis10
32+72+x2+y2
4 (5)2
9+49 +x2y2100 =40
x2+y2=140 58
x2+y2=82
x2+ (10 x)2=82 [UsingEq.(i)]
x2+100 +x220x =82 (ii)
2x220x +18 =0
x210x +9=0
(x9)(x1) = 0
x=1,9(x,y) = (9,1) [ as x >y]
Mean =3+2x +7+2y +x+y+xy
4
=10 +4x +2y
4=48
4=12
Given,meanµ =2.3
ΣP x=23
-------------------------------------------------------------------------------------------------
Question66
Lettheobservationsxi(1i10)satisfytheequations, 10
i=1(xi5) = 10
and 10
i=1(xi5)2=40.Ifµandlambdaarethemeanandthevarianceof
theobservations,x13,x23,....., x10 3,thentheorderedpair(µ,λ)
isequalto:
[Jan.9,2020(I)]
Options:
A.(3,3)
B.(6,3)
C.(6,6)
D.(3,6)
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question67
Themeanandthestandarddeviation(s.d.)of10observationsare20
and2respectively.Eachofthese10observationsismultipliedbypand
thenreducedbyq,wherep≠0andq≠0.Ifthenewmeanandnews.d.
2
5a+1+4
5+6b =23
6b a=09...(i)
Also,ΣP =1
1
5+a+1
3+1
5+b=1
a+b=4
15...(ii)
SolvingEqs.(i)and(ii),weget
a=1
10,b=1
6
Varianceσ2=ΣPixi
2µ2
=1
5(4) + 1
10(1) + 1
3(9) + 1
5(16)
+1
6(36) 5.29
σ2=7.81
100σ2=781
Meanoftheobservation(xi5) = (xi5)
10 =1
λ= {Mean(xi5)} + 2=3
Varianceoftheobservation
µ=var(xi5) = (xi5)2
10 − (xi5)
10 =3
becomehalfoftheiroriginalvalues,thenqisequalto:
[Jan.8,2020(I)]
Options:
A.–5
B.10
C.–20
D.–10
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question68
Themeanandvarianceof20observationsarefoundtobe10and4,
respectively.Onrechecking,itwasfoundthatanobservation9was
incorrectandthecorrectobservationwas11.Thenthecorrectvariance
is:
[Jan.8,2020(II)]
Options:
A.3.99
B.4.01
C.4.02
D.3.98
Answer:A
Solution:
Solution:
Letxandσbethemeanandstandarddeviationsofgivenobservations.
Ifeachobservationismultipliedwithpandthenqissubtracted.
Newmean(x1) = px q
10 =p(20) q......(i)
andnewstandarddeviationsσ1= | p|σ
1= |p|(2) | p| = 1
2p= ±1
2
Ifp=1
2,thenq=0(fromequation(i))
Ifp= 1
2,thenq= 20
Letx1,x2, ......, x20be20observations,then
Mean = x1+x2+ ..... + x20
20 =10
-------------------------------------------------------------------------------------------------
Question69
Ifthevarianceofthefirstnnaturalnumbersis10andthevarianceof
thefirstmevennaturalnumbersis16,thenm+nisequalto________.
[7-Jan-2020Shift1]
Answer:18
Solution:
Solution:
-------------------------------------------------------------------------------------------------
20
i=1
xi
20 =10......(i)
Variance = xi
2n (x)2
xi
2
20 100 =4......(ii)
xi
2=104 ×20 =2080
Actualmean = 200 9+11
20 =202
20
Variance = 2080 81 +121
20 − 202
20
2
=2120
20 (10.1)2 = 106 102.01 =3.99
( )
Step-1:Findnusingvarianceoffirstnnaturalnumberis.
var(1,2,3, ..., n) = 10
Usingformulaforvariancewehave,
12+22+ ... + n2
n1+2+ ... + n
n
2=10
[Since, σ2=Σfidi
NΣf idi
N
2
(n+1)(2n +1)
6n+1
2
2=10
n21
12 =10
n21=120
n2=121
n=11
Step-2:Thevarianceofthefirstmevennaturalnumber:
var(2,4,6...2m) = 16
22var(1,2, ..., m) = 16
var(1,2, ..., m) = 16
22=4
m21
12 =4
m21=48
m2=49
m=7
Step-3:Evaluatem+n.
m+n=7+11
m+n=18.
Thevalueofm+n=18.
( )
( ) ]
( )
Question70
Ifthemeanandvarianceofeightnumbers3,7,9,12,13,20,xandybe
10and25respectively,thenx .yisequalto_________.
[NAJan.7,2020(II)]
Answer:52
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question71
Considerthedataonxtakingthevalues0,2,4,8, ...., 2nwith
frequenciesnC0,nC1,nC2, ...., nCnrespectively.Ifthemeanofthisdata
is728
2n,thennisequalto_______.
[NASep.06,2020(II)]
Answer:6
Solution:
Solution:
Mean = x=3+7+9+12 +13 +20 +x+y
8=10
x+y=16......(i)
Variance = σ2= (xi)2
8 (x)2=25
σ2=9+49 +81 +144 +169 +400 +x2+y2
8100 =25
x2+y2=148
Fromeqn.(i),(x+y)2= (16)2
x2+y2+2xy =256
Usingeqn.(ii),148 +2xy =256
xy =52
Mean = xifi
fi
= 0.nC0+2.nC1+22.nC2+ .... + 2n.nCn
nC0+nC1+ .... + nCn
Tofindsumofnumeratorconsider
(1+x)n=nC0+nC1x+nC2x2+...... + nCnxn......(i)
Putx=23n1=2.nC1+22.nC2+....... + 2n.nCn
Tofindsumofdenominator,putx=1in(i),weget
2n=nC0+nC1+ ...... + nCn
3n1
2n=728
2n3n=729 n=6
-------------------------------------------------------------------------------------------------
Question72
Theminimumvalueof2sin x +2cos xis:
[Sep.04,2020(II)]
Options:
A.2
1+1
2
B.21+ 2
C.21 2
D.2
11
2
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question73
If n
i=1(xia) = nand n
i=1(xia)2=na, (n,a>1),thenthestandard
deviationofnobservationsx1,x2, ......, xnis:
[Sep.06,2020(I)]
Options:
A.a 1
B.na1
C.n(a1)
D.a1
Answer:D
Solution:
2sin x +2cos x
2 (2sin x +cos x)
1
2(∵AM GM )
2sin x +2cos x 2.2
sin x +cos x
2
Since,−2 sin x +cos x 2
∴Minimumvalueof2
sin x +cos x
2=2
1
2
2sin x +2cos x 2
11
2.
Solution:
-------------------------------------------------------------------------------------------------
Question74
Themeanandvarianceof7observationsare8and16,respectively.If
fiveobservationsare2,4,10,12,14,thentheabsolutedifferenceofthe
remainingtwoobservationsis:
[Sep.05,2020(I)]
Options:
A.1
B.4
C.2
D.3
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question75
Ifthemeanandthestandarddeviationofthedata3,5,7,a,bare5and
2respectively,thenaandbaretherootsoftheequation:
[Sep.05,2020(II)]
Options:
A.x210x +18 =0
Standarddeviation =
n
i=1
(xia)2
n
n
i=1
(xia)
n
2
[∵n,a>1]
=na
nn
n
2= a1
( )
( )
Lettworemainingobservationsarex1,x2.
So,x=2+4+10 +12 +14 +x1+x2
7 = 8(given)
x1+y1=14......(i)
Now,σ2=xi
2
Nxi
N
2
=16(given)
=4+16 +100 +144 +196 +x1
2+x2
2
7−64 =16
460 +x1
2+x2
2 = (16 +64) × 7
x1
2+x2
2=100.......(ii)
(x+y)2=x2+y2+2xyxy =48.......(iii)
(xy)2= (x+y)24xy = 196 192 =4
xy=2 | xy| = 2
( )
B.2x220x +19 =0
C.x210x +19 =0
D.x220x +18 =0
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question76
Themeanandvarianceof8observationsare10and13.5,respectively.
If6oftheseobservationsare5,7,10,12,14,15,thentheabsolute
differenceoftheremainingtwoobservationsis:
[Sep.04,2020(I)]
Options:
A.9
B.5
C.3
D.7
Answer:D
Solution:
Solution:
Mean = 3+5+7+a+b
5=5a+b=10
Variance = 32+52+72+a2+b2
5−(5)2=4
a2+b2=62
(a+b)22ab =62
ab =19
Hence,aandbaretherootsoftheequation,
x210x +19 =0
Letthetworemainingobservationsbexandy.
x=5+7+10 +12 +14 +15 +x+y
8
10 =63 +x+y
8
x+y=80 63
x+y=17......(i)
var(x) = 13.5
=25 +49 +100 +144 +196 +225 +x2+y2
8 (10)2
x2+y2=169......(ii)
From(i)and(ii)weget
(x,y) = (12,5)or(5,12)
So,|xy| = 7
Question77
Ifavarianceofthefollowingfrequencydistribution:
is50,thenxisequalto_____________.
[NASep.04,2020(II)]
Answer:4
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question78
Forthefrequencydistribution:
where0 <x1<x2<x3<..... < x15 =10and 15
i=1fi>0,thestandard
deviationcannotbe:
[Sep.03,2020(I)]
Options:
A.4
B.1
C.6
x=fixi
fi
=30 +70 +25x
4+x=25
σ2=fixi
2
fi
(x)2
50 =450 +625x +2450
4+x−625
675 =2900 +625x
4+x50x =200
x=4
D.2
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question79
Letxi(1i10)betenobservationsofarandomvariableX .If
10
i=1(xip) = 3and 10
i=1(xip)2=9where0 pR,thenthestandard
deviationoftheseobservationsis:
[Sep.03,2020(II)]
Options:
A. 3
5
B.4
5
C. 9
10
D. 7
10
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question80
LetX = {xN:1x17}andY = { ax +b:xX and
a,bR,a>0}.IfmeanandvarianceofelementsofY are17and216
respectivelythena +bisequalto:
Ifvariatevarriesfromatobthenvariance
var(x) ba
2
2
var(x) < 10 0
2
2
var(x) < 25
⇒standarddeviation<5
Itisclearthatstandarddeviationcann'tbe6.
( )
( )
S.D. =
10
i=1
(xip)2
10
10
i=1
(xip)
10
2
=9
10 3
10
2=9
10
( )
( )
[Sep.02,2020(I)]
Options:
A.7
B.–7
C.–27
D.9
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question81
IfthevarianceofthetermsinanincreasingA.P.b1,b2,b3, ......., b11is
90,thenthecommondifferenceofthisA.P.is_________.
[NASep.02,2020(II)]
Answer:3
Solution:
Solution:
x=1+2+3+ ..... + 17
17 = 17 ×18
17 ×2=9
y=ax +b=a(1+2+3+ ..... + 17)
17 +b=17
a. (17 .18)
17 .2+b=17 9a +b=17.....(i)
V ar(x) = σA2=x2
n (x)2
=12+22+ ..... + 172
17 (9)2
=17 .18 .35
6.17 (9)2 = 105 81 =24
V ar(y) = a2V ar(x) = a2.24 =216
a2=216
24 =9a=3
∴From(i),b=17 9a =17 27 = 10
a+b=3+ (−10) = 7
Variance =
11
i=1
bi
2
11
11
i=1
bi
11
2
LetcommondifferenceofA.P.bed
=
10
r=0
(b1+rd )2
11
10
r=0
(b1+rd )
11
2
( )
( )
-------------------------------------------------------------------------------------------------
Question82
Ifthesumofthedeviationsof50observationsfrom30is50,thenthe
meanoftheseobservationsis:
[Jan.12,2019(I)]
Options:
A.30
B.51
C.50
D.31
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question83
Themeanandthevarianceoffiveobservationsare4and5.20,
respectively.Ifthreeoftheobservationsare3,4and4;thenthe
absolutevalueofthedifferenceoftheothertwoobservations,is:
[Jan.12,2019(II)]
Options:
A.7
B.5
C.1
D.3
=
11b1
2+2b1d10 ×11
2+d210 ×11 ×21
6
11
11b1+10 ×11
2d
11
2
= (b1
2+10b1d+35d 2) (b1+5d )2 = 10d 2
∵Variance = 90(Given)
10d 2=90 d=3
( ) ( ) ( )
Given,
50
i=1
(xi30) = 50
50
i=1
xi50(30) = 50
50
i=1
xi=1550
Mean,x= xi50
=1550
50 =31
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question84
Theoutcomeofeachof30itemswasobserved;10itemsgavean
outcome1
2d each,10itemsgaveoutcome1
2eachandtheremaining10
itemsgaveoutcome1
2+d each.Ifthevarianceofthisoutcomedatais4
3
then|d|equals:
[Jan.11,2019(I)]
Options:
A.2
3
B.2
C.5
2
D.2
Answer:D
Solution:
Solution:
Lettwoobservationsbex1andx2,then
x1+x2+3+4+4
5=4
x1+x2=9......(i)
Variance = xi
2
N (x)2
(5.20) = 9+16 +16 +x1
2+x2
2
5−16
26 =41 +x1
2+x2
280
x1
2+x2
2=65......(ii)
From(i)and(ii);
x1=8,x2=1
Hence,therequiredvalueofthedifferenceofothertwoobservations= | x1x2| = 7
Outcomesare 1
2d,1
2d,0....., 10times,1
2,1
2,...., 10times, 1
2+d,1
2+d, ...., 10times
Mean =1
30
1
2×30 =1
2
Varianceoftheoutcomesis,
σ2=1
30 xi
2 (x)2
=1
30
1
2d2×10 +1
2
2×10+ 1
2+d2×10 1
4
4
3=1
30 30 ×1
4+20d 21
4
4
3=1
4+2
3d21
4
( ) ( )
( )
[ ( ) ( ) ( ) ]
[ ]
-------------------------------------------------------------------------------------------------
Question85
Adataconsistsofnobservations:
x1,x2, ....., xn.If n
i=1(xi+1)2=9nand n
i=1(xi1)2=5nthenthestandard
deviationofthisdatais:
[Jan.09,2019(II)]
Options:
A.2
B.5
C.5
D.7
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question86
Themeanoffiveobservationsis5andtheirvarianceis9.20.Ifthreeof
thegivenfiveobservationsare1,3and8,thenaratioofothertwo
observationsis:
[Jan.10,2019(I)]
Options:
A.10:3
d2=2 | d| = 2
Varianceisgivenby,
σ2=1
n
n
i=1
xi
21
n
n
i=1
xi
2
σ2=1
nA1
n2B2.....(i)
Here,A=
n
i=1
xi
2andB=
n
i=1
xi
n
i=1
(xi+1)2=9n
A+n+2B =9nA+2B =8n......(ii)
n
i=1
(xi1)2=5n
A+n2B =5nA2B =4n......(iii)
From(ii)and(iii),
A=6n,B=n
σ2=1
n×6n 1
n2×n2 = 61=5
σ= 5
( )
B.4:9
C.5:8
D.6:7
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question87
Ifmeanandstandarddeviationof5observationsx1,x2,x3,x4,x5are10
and3,respectively,thenthevarianceof6observationsx1,x2, ....., x5
and-50isequalto:
[Jan.10,2019(II)]
Options:
A.509.5
B.586.5
C.582.5
D.507.5
Answer:D
Solution:
Solution:
Sincemeanofx1,x2,x3,x4andx5is5
x1+x2+x3+x4+x5=25
1+3+8+x4+x5=25
x4+x5=13....(i)
5
i=1
xi
25 (5)2=9.2⇒
5
i=1
xi
2=5(25 +9.2)
=125 +46 =171
(1)2+ (3)2+ (8)2+x4
2+x5
2=171
x4
2+x5
2=97......(ii)
(x4+x5)22x4x5=97
2x4x5=13297 =72⇒x4x5=36......(iii)
(i)and(iii)⇒x4:x5=4
9or9
4
x=
5
i=1
xi
5
5
i=1
xi=10 ×5=50
6
i=1
xi =50 50 =0
5
i=1
xi
2
5 (10)2=32=9
5
i=1
xi
2=545
Then,
-------------------------------------------------------------------------------------------------
Question88
5studentsofaclasshaveanaverageheight150cmandvariance18
cm2.Anewstudent,whoseheightis156cm,joinedthem.Thevariance
(incm2)oftheheightofthesesixstudentsis:
[9-Jan-2019Shift1]
Options:
A.22
B.20
C.16
D.18
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question89
Ifforsomex R,thefrequencydistributionofthemarksobtainedby
20studentsinatestis:
6
i=1
xi
2=
5
i=1
xi
2+ (−50)2
=545 + (−50)2=3045
Variance =
6
i=1
xi
2
6
6
i=1
xi6
2
= 3045
60=507.5
( )
Given x =Σxi
5=150
5
i=1
xi=750.... (i)
σ2=18
Σxi
2
5 (x)2=18
Σxi
2
5 (150)2=18
xi
2=112590.... (ii)
Givenheightofnewstudent
x6=156
Now,xnew =
5
Σ
i=1
xi
6=750 +156
6=151
Also, σ new
2=
5
Σ
i=1
xi
2
6 (xnew )2
=112590 + (156)2
6 (151)2
=22821 22801 =20.
thenthemeanofthemarksis:
[April10,2019(I)]
Options:
A.3.2
B.3.0
C.2.5
D.2.8
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question90
Themeanandthemedianofthefollowingtennumbersinincreasing
order10,22,26,29,34,x,42,67,70,yare42and35respectively,then
y
xisequalto:
[April.09,2019(II)]
Options:
A.9/4
B.7/2
C.8/3
D.7/3
Answer:D
Solution:
Numberofstudentsare,
(x+1)2+ (2x 5) + (x23x)+x=20
2x2+2x 4=20x2+x12 =0
(x+4)(x3) = 0x=3
Averagemarks = 32 +3+21
20 =56
20 =2.8
Solution:
-------------------------------------------------------------------------------------------------
Question91
Ifthedatax1,x2, ......., x10issuchthatthemeanoffirstfouroftheseis
11,themeanoftheremainingsixis16andthesumofsquaresofallof
theseis2,000;thenthestandarddeviationofthisdatais:
[April12,2019(I)]
Options:
A.22
B.2
C.4
D.2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question92
Ifboththemeanandthestandarddeviationof50observations
x1,x2, ......., x50areequalto16,thenthemeanof
(x14)2, (x24)2, ....., (x50 4)2is:
[April10,2019(II)]
Options:
A.400
Tennumbersinincreasingorderare10,22,26,29,34,x,42,67,70,y
Mean = xi
n=x+y+300
10 =42x+y=120
Median = T5+T6
2=35 =34 +x
2x=36andy=84
Hence,y
x=84
36 =7
3
Accordingtothequestion,
x1+x2+x3+x4
4=11x1+x2+x3+x4=44
x5+x6+ .... + x10
6=16x5+x6+ ..... + x10 =96
andx1
2+x2
2+ .... . x10
2=2000
∵standarddeviation,σ2=xi
2
N (x)2
=2000
10 44 +96
10
2=4σ=2
( )
B.380
C.525
D.480
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question93
Ifthestandarddeviationofthenumbers1,0,1,kis5wherek >0,
thenkisequalto:
[April09,2019(I)]
Options:
A.26
B.2 10
3
C.4 5
3
D.6
Answer:A
Solution:
Solution:
Given,meanandstandarddeviationareequalto16.
x1+x2+ ..... . x50
50 =16
and162=x1
2+x2
2.... . x50
2
50 162
2(16)250 =x1
2+x2
2+ .... . x50
2
Requiredmean = (x14)2+ (x24)2+ ..... . (x50 4)2
50
=x1
2+x2
2+ ..... + x50
2+50 ×16 8(x1+x2+ ..... + x50)
50
=162(100) + (50) 8(16 ×50)
50 = 400
Meanofgivenobservation = k
4
∵Standarddeviation = 5
σ2=5
σ2=1
n (xix)2
=
k
4+12+k
4
2+k
412+3k
4
2
4 = 5
( ) ( ) ( ) ( )
-------------------------------------------------------------------------------------------------
Question94
Themeanandvarianceofsevenobservationsare8and16,respectively.
If5oftheobservationsare2,4,10,12,14,thentheproductofthe
remainingtwoobservationsis:
[April08,2019(I)]
Options:
A.45
B.49
C.48
D.40
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question95
Astudentscoresthefollowingmarksinfivetests:45,54,41,57,43.
Hisscoreisnotknownforthesixthtest.Ifthemeanscoreis48inthe
sixtests,thenthestandarddeviationofthemarksinsixtestsis:
[April.08,2019(II)]
Options:
A.10
3
B.100
3
12k2
16 +2
4=5k=26
Lettheremainingnumbersareaandb.
Mean(x) = xi
N = 2+4+10 +12 +14 +a+b
7=8
a+b=14......(i)
Variance(σ2) = xi
2
N (x)2=16
22+42+102+122+142+a2+b2
7−(8)2=16a2+b2=100......(ii)
From(i)and(ii),(14 b)2+b2=100
196 +b228b +b2=100
b214b +48 =0
b=6,8
(a,b) = (6,8)or(8,6)
Hence,theproductoftheremainingtwoobservations = ab =48
C.10
3
D.100
3
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question96
Themeanofasetof30observationsis75.Ifeachotherobservationis
multipliedbyanon-zeronumberλandtheneachofthemisdecreased
by25,theirmeanremainsthesame.Thelisequalto
[OnlineApril15,2018]
Options:
A.10
3
B.4
3
C.1
3
D.2
3
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question97
∵Meanscore = 48
Letunknownscorebex,
x=41 +45 +54 +57 +43 +x
6 = 48
x+240 =288 x=48
Now,σ2=1
6[ (48 41)2+ (48 45)2+(48 54)2+ (48 57)2+ (48 43)2+(48 48)2
=1
6(49 +9+36 +81 +25) = 200
6=100
3
σ=10
3
Asmeanisalinearoperation,soifeachobservationismultipliedbylambdaanddecreasedby25thenthemean
becomes75λ 25.
Accordingtothequestion,
75λ 25 =75 λ=4
3
Themeanandthestandarddeviation(s.d.)offiveobservationsare9
and0,respectively.
Ifoneoftheobservationsischangedsuchthatthemeanofthenewset
offiveobservationsbecomes10,thentheirs.d.is?
[OnlineApril16,2018]
Options:
A.0
B.4
C.2
D.1
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question98
Ifthemeanofthedata:7,8,9,7,8,7,λ,8is8,thenthevarianceof
thisdatais
[OnlineApril15,2018]
Options:
A.9
8
B.2
C.7
8
D.1
Answer:D
Solution:
Heremean = x=9
x=xi
n=9
xi=9×5=45
Now,standarddeviation = 0
∴allthefivetermsaresamei.e.;9.
Nowforchangedobservation
xnew =36 +x5
5=10
x5=14
σnew = (xixnew)2
n
=4(910)2+ (14 10)2
5=2
Solution:
-------------------------------------------------------------------------------------------------
Question99
If 9
i=1(xi5) = 9and 9
i=1(xi5)2=45,thenthestandarddeviationofthe9
itemsx1,x2, ....., x9is:
[2018]
Options:
A.4
B.2
C.3
D.9
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question100
Themeanageof25teachersinaschoolis40years.Ateacherretiresat
theageof60yearsandanewteacherisappointedinhisplace.Ifnow
themeanageoftheteachersinthisschoolis39years,thentheage(in
x=7+8+9+7+8+7+λ+8
8 = 8
54 +λ
8=8λ=10
Nowvariance = σ2
=(78)2+ (88)2+ (98)2+ (78)2+ (88)2+(78)2+ (10 8)2+ (88)2
8
σ2=1+0+1+1+0+1+4+0
8 = 8
8=1
Hence,thevarianceis1.
Given
9
i=1
(xi5) = 9
9
i=1
xi=54......(i)
Also,
9
i=1
(xi5)2=45
9
i=1
xi
210
9
i=1
xi+9(25) = 45......(ii)
From(i)and(ii)weget,
9
i=1
xi
2=360
Since,variance = xi
2
9xi
9
2
=360
954
9
2=40 36 =4
∴Standarddeviation = Variance =2
( )
( )
years)ofthenewlyappointedteacheris:
[OnlineApril8,2017]
Options:
A.25
B.30
C.35
D.40
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question101
Thesumof100observationsandthesumoftheirsquaresare400and
2475,respectively.Lateron,threeobservations,3,4and5,werefound
tobeincorrect.Iftheincorrectobservationsareomitted,thenthe
varianceoftheremainingobservationsis:
[OnlineApril9,2017]
Options:
A.8.25
B.8.50
C.8.00
D.9.00
Answer:D
Solution:
Solution:
Let;x1+x2+ ...... + x25
25 =x=40
x1+x2+ ...... + x25 =1000
x2+x2+ ...... + x25 60 +A = 39 ×25
LetAbetheageofnewteacher.
1000 60 +A=975
A=975 940 =35
100
i=1
xi=400
100
i=1
xi
2=2475
Variance = σ2=xi
2
Nxi
N
2
=2475
97 388
97
2
( )
( )
-------------------------------------------------------------------------------------------------
Question102
Ifthestandarddeviationofthenumbers2,3,aand11is3.5,then
whichofthefollowingistrue?
[2016]
Options:
A.3a234a +91 =0
B.3a223a +44 =0
C.3a226a +55 =0
D.3a232a +84 =0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question103
Themeanof5observationsis5andtheirvarianceis124.Ifthreeofthe
observationsare1,2and6;thenthemeandeviationfromthemeanof
thedatais:
[OnlineApril10,2016]
Options:
A.2.5
B.2.6
C.2.8
D.2.4
Answer:C
Solution:
=2425 1552
97 =873
97 =9
x=2+3+a+11
4=a
4+4
σ=xi
2
n (x)2
3.5 = 4+9+a2+121
4a
4+42
49
4 = 4(134 +a2) (a2+256 +32a)
16
3a232a +84 =0
( )
Solution:
-------------------------------------------------------------------------------------------------
Question104
Ifthemeandeviationofthenumbers1,1+d,...,1+100dfromtheir
meanis255,thenavalueofdis:
[OnlineApril9,2016]
Options:
A.10.1
B.5.05
C.20.2
D.10
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question105
Themeanofthedatasetcomprisingof16observationsis16.Ifoneof
n=5
x=5
variance = 124
x1=1,x2=2,x3=6
x=5
x1+x2+x3+x4+x5
5=5
x4+x5+9=25
x4+x5=16
x4+x5+10 10 =16
(x45) + (x55) = 16 10
(x45) + (x55) = 6
Meandeviation = xix|
N
= |x15|+ | x25| + |x35|+ |x45|+|x55|
5
=4+3+1+6
5=14
5=2.8
x=1
101[1+ (1+d) + (1+2d )]...... . (1+100d )]
=1
101 ×101
2[1+ (1+100d )] = 1+50d
meandeviationfrommean
=1
101[ |1 (1+50d )|+ | (1+d)−(1+50d ) | .........|[1+100d ] (1+50d ) ] ]
=2|d|
101 (1+2+3...... + 50)
=2|d|
101 ×50 ×51
2=2550
101 |d|
=2550
101 |d| = 225 |d| = 10.1
theobservationvalued16isdeletedandthreenewobservationsvalued
3,4and5areaddedtothedata,thenthemeanoftheresultantdata,is:
[2015]
Options:
A.15.8
B.14.0
C.16.8
D.16.0
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question106
LetthesumofthefirstthreetermsofanA.P,be39andthesumofits
lastfourtermsbe178.IfthefirsttermofthisA.P.is10,thenthe
medianoftheA.P.is:
[OnlineApril10,2015]
Options:
A.28
B.26.5
C.29.5
D.31
Answer:C
Solution:
Solution:
Sumof16observations = 16 ×16 =256
Sumofresultant18observations
=256 16 + (3+4+5) = 252
Meanofobservations = 252
18 =14
a1+a2+a3=39
a1+ (a1+d) + (a1+2d ) = 39
3a1+3d =39[∵a1=10]
d=3
Sumoflastfourterm = 178
Theirmean = 178
4=44.5
an=44.5 +1.5 +3=49
Median = 10 +49
2=59
2=29.5
-------------------------------------------------------------------------------------------------
Question107
Afactoryisoperatingintwoshifts,dayandnight,with70and30
workersrespectively.Ifperdaymeanwageofthedayshiftworkersis
Rs.54andperdaymeanwageofalltheworkersisRs.60,thenperday
meanwageofthenightshiftworkers(inRs.)is:
[OnlineApril10,2015]
Options:
A.69
B.66
C.74
D.75
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question108
Inasetof2ndistinctobservations,eachoftheobservationsbelowthe
medianofalltheobservationsisincreasedby5andeachofthe
remainingobservationsisdecreasedby3.Thenthemeanofthenewset
ofobservations:
[OnlineApril9,2014]
Options:
A.increasesby1
B.decreasesby1
C.decreasesby2
D.increasesby2
Answer:A
Solution:
Solution:
LetaveragewageofNightshiftworkerisX
70 ×54 +30 ×x=60 ×100
x=74
Thereare2nobservationsx1,x2, ....., x2n
-------------------------------------------------------------------------------------------------
Question109
Thevarianceoffirst50evennaturalnumbersis
[2014]
Options:
A.437
B.437
4
C.833
4
D.833
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question110
Letx,M andsigma2berespectivelythemean,modeandvarianceofn
observationsx1,x2, ......., xnandd i= xia,i =1,2, ......., n,wherea
isanynumber.
StatementI:Varianceofd 1,d2, ..... . dnisσ2
StatementII:Meanandmodeofd 1,d2, ..... . dnarexaandMa,
So,mean =
2n
i=1
xi
2n
Lettheseobservationsbedividedintotwopartsx1,x2, ......, xnandxn+1, ......., x2n
Eachin1stpart5isadded,sototaloffirstpartis
n
i=1
xi+5n.
Insecondpart3issubtractedfromeach
So,totalofsecondpartis
2n
i=n+1
xi3n
Totalof2ntermsare
n
i=1
xi+5n +
2n
i=n+1
xi3n =
2n
i=1
xi+2n
Mean =
2n
i=1
xi+2n
2n =
2n
i=1
xi
2n +1
So,itincreaseby1.
First50evennaturalnumbersare2,4,6......, 100
Variance = xi
2
N (x)2
σ2=22+42+ .... + 1002
50 − 2+4+ ..... + 100
50
2
=4(12+22+32+ ..... + 502)
50 −(51)2
=450 ×51 ×101
50 ×6 (51)2
=3434 2601 σ2=833
( )
( )
respectively.
[OnlineApril19,2014]
Options:
A.StatementIandStatementIIarebothfalse
B.StatementIandStatementIIarebothtrue
C.StatementIistrueandStatementIIisfalse
D.StatementIisfalseandStatementIIistrue
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question111
LetX andM.D.bethemeanandthemeandeviationaboutX ofn
observationsxi,i=1,2, ......., n.Ifeachoftheobservationsis
increasedby5,thenthenewmeanandthemeandeviationaboutthe
newmean,respectively,are:
[OnlineApril12,2014]
Options:
A.X ,M.D
B.X +5,M.D
C.X ,M.D. + 5
D.X +5,M.D. + 5
x=x1+x2+x3+ .... + xn
n
σ2=1
n
n
i=1
(xix)2
Meanofd1,d2,d3, ...., dn
=d1+d2+d3+ .... + dn
n
=(−x1a) + (−x2a) + (−x3a) + ...... + (−xna)
n
= x1+x2+x3+ .... + xn
n−na
n= xa
Since,di= xiaandwemultiplyorsubtracteachobservationbyanynumberthemoderemainsthesame.Hence
modeof−xiai.e.diandxiaresame.
Nowvarianceofd1,d2, ...., dn
=1
n
n
i=1
[di (−xa)]2
=1
n
n
i=1
[−xia+x+a]2
=1
n
n
i=1
(−xi+x)2 = 1
n
n
i=1
(xxi)2=σ2
[ ]
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question112
Ifthemedianandtherangeoffournumbers{x,y,2x+y,x–y},where
0<y<x<2y,are10and28respectively,thenthemeanofthe
numbersis:
[OnlineApril23,2013]
Options:
A.18
B.10
C.5
D.14
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question113
Themeanofadatasetconsistingof20observationsis40.
Ifoneobservation53waswronglyrecordedas33,thenthecorrect
meanwillbe:
Letxibenobservations,i=1,2, ..... . n
LetXbethemeanandM.DbethemeandeviationaboutX.
Ifeachobservationisincreasedby5thennewmeanwillbeX+5andnewM.D.aboutnewmeanwillbeM.D.
Mean =
n
i=1
xi
n
( )
Since0<y<x<2y
y>x
2xy<x
2
xy<y<x<2x +y
Hencemedian = y+x
2=10
x+y=20.......(i)
Andrange = (2x +y) (xy) = x+2y
Butrange = 28
x+2y =28.........(ii)
Fromequations(i)and(ii),
x=12,y=8
Mean = (xy) + y+x+ (2x +y)
4 = 4x +y
4
=x+y
4=12 +8
4=14
[OnlineApril9,2013]
Options:
A.41
B.49
C.40.5
D.42.5
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question114
AllthestudentsofaclassperformedpoorlyinMathematics.The
teacherdecidedtogivegracemarksof10toeachofthestudents.
Whichofthefollowingstatisticalmeasureswillnotchangeevenafter
thegracemarksweregiven?
[2013]
Options:
A.mean
B.median
C.mode
D.variance
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question115
Correctmean = 20 ×40 33 +55
20 =41.1
Nearestoption:(a)41
Ifinitiallyallmarkswerexithen
σ1
2=
i
(xix)2
N
Noweachisincreasedby10
σ1
2=
i
[(xi+10) (x+10)]2
N =
i
(xix)2
N=σ1
2
Hence,variancewillnotchangeevenafterthegracemarksweregiven.
Inasetof2nobservations,halfofthemareequalto'a'andthe
remaininghalfareequalto'–a'.Ifthestandarddeviationofallthe
observationsis2;thenthevalueof|a|is:
[OnlineApril25,2013]
Options:
A.2
B.2
C.4
D.22
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question116
Meanof5observationsis7.Iffouroftheseobservationsare6,7,8,10
andoneismissingthenthevarianceofallthefiveobservationsis:
[OnlineApril22,2013]
Options:
A.4
B.6
C.8
D.2
Answer:D
Solution:
Solution:
ClearlymeanA=0
Now,standarddeviationσ= (xA)2
2n
2=(a0)2+ (a0)2+ ....... + (0a)2+ ......
2n
=a2.2n
2n = |a|
Hence,|a| = 2
Let5thobservationbex.
Givenmean = 7
7=6+7+8+10 +x
5
x=4
Now,Variance
-------------------------------------------------------------------------------------------------
Question117
Themedianof100observationsgroupedinclassesofequalwidthis25.
Ifthemedianclassintervalis20-30andthenumberofobservations
lessthan20is45,thenthefrequencyofmedianclassis
[OnlineMay19,2012]
Options:
A.10
B.20
C.15
D.12
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question118
Thefrequencydistributionofdailyworkingexpenditureoffamiliesina
localityisasfollows:
IfthemodeofthedistributionisRs.140,thenthevalueofbis
[OnlineMay7,2012]
=(67)2+ (77)2+ (87)2+ (10 7)2+ (47)2
5
=12+02+12+32+32
5 = 20
5= 4=2
Medianisgivenas
M=l+
N
2F
f×C
where
l= lowerlimitofthemedian-class
f= frequencyofthemedianclass
N= totalfrequency
F= cumulativefrequencyoftheclassjustbeforethemedianclass
C= lengthofmedianclass
Now,given,M=25,N=100,F=45,C=20 30 =10,l=20
∴Byusingformula,wehave
25 =20 +50 45
f×10
25 20 =50
f5=50
f⇒f=10
Options:
A.34
B.31
C.26
D.36
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question119
Letx1,x2, ......, xnbenobservations,andletxbetheirarithmeticmean
andσ2bethevariance.
Statement-1:Varianceof2x1,2x2, ...., 2xnis4σ2
Statement-2:Arithmeticmean2x1,2x2, ......, 2xnis4x.
[2012]
Options:
A.Statement-1isfalse,Statement-2istrue.
B.Statement-1istrue,statement-2istrue;statement-2isacorrectexplanationforStatement-
1.
Frequencydistributionisgivenas
Clearly,modalclassis100-150,asthemaximumfrequencyoccursinthisclass.
Given,Mode=140
Wehave
Mode = l+f0f1
2f 0f1f1
×i
where
l=100,f0=37,f1=33,f1=b
i=50
Thus,weget
140 =100 +37 33
2(37) 33 b×50
=100 +4
74 33 b×50 = 100 +200
41 b
5740 =4300 +40bb=36
[ ]
[ ]
C.Statement-1istrue,statement-2istrue;statement-2isnotacorrectexplanationfor
Statement-1.
D.Statement-1istrue,statement-2isfalse.
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question120
Statement1:Thevarianceoffirstnoddnaturalnumbersisn21
3
Statement2:Thesumoffirstnoddnaturalnumberisn2andthesum
ofsquareoffirstnoddnaturalnumbersisn(4n2+1)
3
[OnlineMay26,2012]
Options:
A.Statement1istrue,Statement2isfalse.
B.Statement1istrue,Statement2istrue;Statement2isnotacorrectexplanationfor
Statement1.
C.Statement1isfalse,Statement2istrue.
D.Statement1istrue,Statement2istrue,Statement2isacorrectexplanationforStatement
1.
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question121
Ifthemeanof4,7,2,8,6andais7,thenthemeandeviationfromthe
medianoftheseobservationsis
[OnlineMay12,2012]
Options:
A.M.of2x1,2x2, ....., 2xnis
2x1+2x2+ ..... + 2xn
n = 2x1+x2+ ....... + xn
n = 2x Mean =Sumofobservations
Numberofobservations
Sostatement-2isfalse.
Ifeachobservationsismultiplyby2thenmeanmultiplyby2andvariancemultiplyby22.
variance(2xi) = 22variance(xi) = 2wherei=1,2, ...... . n
Sostatement-1istrue.
( ) ( )
Statement2:Sumoffirstnoddnaturalnumbersisnotequalton2.
So,statement-2isfalse.
A.8
B.5
C.1
D.3
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question122
Ascientistisweighingeachof30fishes.Theirmeanweightworkedout
is30gmandastandariondeviationof2gm.Later,itwasfoundthatthe
measuringscalewasmisalignedandalwaysunderreportedeveryfish
weightby2gm.Thecorrectmeanandstandarddeviation(ingm)of
fishesarerespectively:
[2011RS]
Options:
A.32,2
B.32,4
C.28,2
D.28,4
Answer:A
Solution:
Givenobservationsare4,7,2,8,6,aandmeanis7.
Weknow
Mean = 4+7+2+8+6+a
6
7=4+7+2+8+6+a
6⇒a=15
Now,givenobservationscanbewritteninascendingorderwhichis2,4,6,7,8,15
Since,No.ofobservationiseven
∴Median =
6
2thobservation +6
2+1 thobservation
2
=3rdobservation +4thobservation
2 = 6+7
2=13
2
Now,Meandeviation =
6
i=1
xi13
2
6
=
413
2+713
2+213
2+813
2+613
2+15 13
2
6
=
5
2+1
2+9
2+3
2+1
2+17
2
6 = 18
6=3
( ) ( )
| |
| | | | | | | | | | | |
Solution:
-------------------------------------------------------------------------------------------------
Question123
Ifthemeandeviationaboutthemedianofthenumbersa,2a,.......,50ais
50,then|a|equals
[2011]
Options:
A.3
B.4
C.5
D.2
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question124
Fortwodatasets,eachofsize5,thevariancesaregiventobe4and5
andthecorrespondingmeansaregiventobe2and4,respectively.The
varianceofthecombineddatasetis
[2010]
Options:
A.11
2
B.6
C.13
2
Weknowthatifeachobservationisincreaseby2thenmeanisincreaseby2butS.D.remainssame.
Correctmean=observedmean+2=30 +2=32
CorrectS.D.=observedS.D=2
n=50(even)
Median = 25thobs. + 26thobs
2
M=25a +26a
2=25.5a
M.D(M) = | xiM|
N
50 =1
50[2×a| ×( 0.5 +1.5+2.5 + .... . .24.5 ) ]
2500 =2|a| × 25
2(25)
⇒|a| = 4
D.5
2
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question125
Ifthemeandeviationofthenumbers1,1+d,1+2d , ... . 1+100d
fromtheirmeanis255,thendisequalto:
[2009]
Options:
A.20.0
B.10.1
C.20.2
D.10.0
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question126
σx
2=4,σy
2=5,x=2,y=4
σx
2=1
5xi
2 (2)2=4⇒ xi
2=40
σy
2=1
5yi
2 (4)2=5⇒ yi
2=105
xi
2+ yi
2 = (xi
2+yi
2) = 145
xi+ yi= (xi+yi) = 5(2) + 5(4) = 30
Varianceofcombineddata
=1
10 (xi
2+yi
2)− 1
10 (xi+yi)2
=145
10 9=11
2
( )
Mean = 101 +d(1+2+3+ .... + 100)
101
=1+d×100 ×101
101 ×2 = 1+50d
Giventhatmeandeviationfromthemean=255
1
101[ |1 (1+50d )|+ | (1+d)−(1+50d )|+ | (1+2d ) (1+50d ) | +.....+|(1+100d ) (1+50d )| ] = 255
2d [1+2+3+ .... + 50] = 101 ×255
2d ×50 ×51
2=101 ×255
d=101 ×255
50 ×51 =10.1
Statement-1:Thevarianceoffirstnevennaturalnumbersisn21
4
Statement-2:Thesumoffirstnnaturalnumbersisn(n+1)
2andthesum
ofsquaresoffirstnnaturalnumbersisn(n+1)(2n +1)
6.
[2009]
Options:
A.Statement-1istrue,Statement-2istrue.Statement-2isnotacorrectexplanationfor
Statement-1.
B.Statement-1istrue,Statement-2isfalse.
C.Statement-1isfalse,Statement-2istrue.
D.Statement-1istrue,Statement-2istrue.Statement-2isacorrectexplanationforStatement-
1.
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question127
Themeanofthenumbersa,b,8,5,10is6andthevarianceis6.80.
Thenwhichoneofthefollowinggivespossiblevaluesofaandb?
[2008]
Options:
A.a=0,b=7
B.a=5,b=2
C.a=1,b=6
D.a=3,b=4
Answer:D
Solution:
Firstnevennaturalnumbersbe2,4,6,8, ...., 2n
x=2(1+2+3+ ..... + n)
n = 2[n(n+1)]
2n = (n+1)
AndV ar = (xx)2
2n =x2
n (x)2
=4n2
n (n+1)2 = 4n(n+1)(2n +1)
6n (n+1)2
=2(2n +1)(n+1)
3 (n+1)2 = (n+1)4n +23n 3
3
=(n+1)(n1)
3=n21
3
thereforeStatement-1isfalse.Clearly,statement-2istrue.
[ ]
Solution:
-------------------------------------------------------------------------------------------------
Question128
Theaveragemarksofboysinclassis52andthatofgirlsis42.The
averagemarksofboysandgirlscombinedis50.Thepercentageofboys
intheclassis
[2007]
Options:
A.80
B.60
C.40
D.20
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question129
SupposeapopulationAhas100observations101,102,...... . .200and
anotherpopulationBhas100observations151,152, .... . .250.IfV A
andV Brepresentthevariancesofthetwopopulations,respectivelythen
VA
VBis
[2006]
Options:
Meanofa,b,8,5,10is6
a+b+8+5+10
5=6
a+b=6......(i)
Varianceofa,b,8,5,10is6.80
(a6)2+ (b6)2+ (86)2+ (56)2+ (10 6)2
5=6.80
a212a +36 + (1a)2+21 =34[usingeq.(i)]
2a214a +24 =0⇒a27a +12 =0
a=3or4b=4or3
∴Thepossiblevaluesofaandbarea=3andb=4or,a=4andb=3
Letthenumberofboysbexandgirlsbey.
52x +42y =50(x+y)
52x 50x =50y 42y
2x =8y x
y=4
1x
x+y=4
5
∴Required%ofboys = x
x+y×100
=4
5×100 =80%
A.1
B.9
4
C.4
9
D.2
3
Answer:A
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question130
Letx1,x2, ...... . xnbenobservationssuchthatxi
2=400andxi=80.
Thenthepossiblevalueofnamongthefollowingis
[2005]
Options:
A.15
B.18
C.9
D.12
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question131
Ifinafrequencydistribution,themeanandmedianare21and22
respectively,thenitsmodeisapproximately
σx
2=di
2
n(Heredi= deviationsaretakenfromthemean).SincepopulationAandpopulationBbothhave100
consecutiveintegers,thereforebothhavesamestandarddeviationandhencethevarianceisalsosame.∴VA
VB
=1
Weknowthatforpositiverealnumbersx1,x2, ....., xn,
A.M.ofkthpowersofxikththepowerofA.M.ofxi
x1
2
nx1
n
2
400
n80
n
2
n16.Soonlypossiblevaluefor
n=18
( ) ( )
[2005]
Options:
A.22.0
B.20.5
C.25.5
D.24.0
Answer:D
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question132
Inaseriesof2nobservations,halfofthemequalaandremaininghalf
equala.Ifthestandarddeviationoftheobservationsis2,then|a|
equals.
[2004]
Options:
A.2
n
B.2
C.2
D.1
n
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
WeknowthatMode = 3Median-2Mean
3×22 2×21 = 66 42 =24
Clearlysumofobservations = 0,
∴meanA=0
Standarddeviationσ= (xA)2
2n
2=(a0)2+ (a0)2+ ... . (0a)2+ ...
2n [σ=2]
=a2.2n
2n = |a|
Hence,|a| = 2
Question133
Considerthefollowingstatements:
(A)Modecanbecomputedfromhistogram
(B)Medianisnotindependentofchangeofscale
(C)Varianceisindependentofchangeoforiginandscale.
Whichoftheseis/arecorrect?
[2004]
Options:
A.(A),(B)and(C)
B.Only(B)
C.Only(A)and(B)
D.Only(A)
Answer:C
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question134
Themedianofasetof9distinctobservationsis20.5.Ifeachofthe
largest4observationsofthesetisincreasedby2,thenthemedianof
thenewset
[2003]
Options:
A.remainsthesameasthatoftheoriginalset
B.isincreasedby2
C.isdecreasedby2
D.istwotimestheoriginalmedian.
Answer:A
Solution:
Solution:
Onlyfirststatement(A)andsecondstatements(B)arecorrect.
Numberofterms(n) = 9
AsnisoddMedian = n+1
2thterm
Medianis5thterm
Ifeachofthelargest4observationsofthesetisincreasedby2,thenitdoesn'taffectthe5thtermororderofthe
terms.
Themedianremainssamethatisitwillbe20.
-------------------------------------------------------------------------------------------------
Question135
Inanexperimentwith15observationsonx,thefollowingresultswere
available:
x2=2830, x=170
Oneobservationthatwas20wasfoundtobewrongandwasreplacedby
thecorrectvalue30.Thecorrectedvarianceis
[2003]
Options:
A.8.33
B.78.00
C.188.66
D.177.33
Answer:B
Solution:
Solution:
-------------------------------------------------------------------------------------------------
Question136
Inaclassof100studentsthereare70boyswhoseaveragemarksina
subjectare75.Iftheaveragemarksofthecompleteclassis72,then
whatistheaverageofthegirls?
[2002]
Options:
A.73
B.65
C.68
D.74
Answer:B
Solution:
x=170, x2=2830
New,∑ x = 170 + (30 20) = 180
New,∑ x2=2830 + (900 400)
=2830 +500 =3330
Now,Variance = 1
nx21
nx2
=1
15 ×3330 1
15 ×180 2 = 222 144 =78.
( )
( )
-------------------------------------------------------------------------------------------------
Totalstudent = 100
Totalmarksof70boys = 75 ×70 =5250
⇒Totalmarksofgirls = 7200 5250 =1950
Numberofgirls = 100 70 =30
Averageofgirls = 1950
30 =65